
Abstrak - BAGAS WINERANG
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan

BAB 1 Bagas Winerang
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan

BAB 2 Bagas Winerang
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan

BAB 3 Bagas Winerang
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan

BAB 4 Bagas Winerang
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan

BAB 5 Bagas Winerang
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan

COVER Bagas Winerang
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan

DAFTAR PUSTAKA Bagas Winerang
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
Air Traffic Control (ATC) at airports is sometimes challenged by fog and rain, which impair
the detection and tracking of aircraft, especially during landing. This study presents
a deep learning approach employing vision-AI YOLO (You Only Look Once) to improve
aircraft detection under low-visibility conditions. A dataset of 1,001 images was augmented
with a simulated fog effect to mimic adverse weather conditions, and two distinct
detection models were trained using this enhanced dataset. Experimental results indicate
that the proposed models achieve high precision, recall, F1-score, and mAP, demonstrating
robust performance in challenging visual environments. The findings suggest that incorporating
fog-effect augmentation can significantly enhance aircraft detection and tracking
in low-visibility conditions, with an mAP@0.50–0.95 score of 81.57%. This approach improves
ATC decision-making, offering a scalable solution for aviation safety at airports.