Abstrak - Mohammad Rivan Alfareza Widodo
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
COVER Mohammad Rivan Alfareza Widodo
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
BAB 1 Mohammad Rivan Alfareza Widodo
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
BAB 2 Mohammad Rivan Alfareza Widodo
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
BAB 3 Mohammad Rivan Alfareza Widodo
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
BAB 4 Mohammad Rivan Alfareza Widodo
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
BAB 5 Mohammad Rivan Alfareza Widodo
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
DAFTAR PUSTAKA Mohammad Rivan Alfareza Widodo
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
LAMPIRAN Mohammad Rivan Alfareza Widodo
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
This thesis quantifies the risk of aircraft hard landings using a physics-based model
and subset simulation on operational flight data. Hard landings, although rare,
contribute significantly to landing-related incidents in aviation. Traditional
statistical methods often fail to capture the true risk of such rare events due to
limited occurrence in datasets. To address this, a simplified physical model was
developed to estimate vertical acceleration (????????????????) during landing using Quick Access
Recorder (QAR) data from 4,204 Boeing 747 flights at KMSP airport. The dataset
was preprocessed by isolating the landing phase (1000 ft AGL to 15 seconds after
touchdown), classifying runways, and smoothing sensor noise. The model treats the
aircraft as a rigid body and incorporates parameters such as pitch angle, angle of
attack, elevator deflection, engine N1, true airspeed (reconstructed from
groundspeed and wind), and barometric altitude. A hard landing is defined as
exceeding 1.8g at touchdown. Model outputs were validated against QAR data and
used in subset simulation to estimate the probability of a hard landing. Ten
independent subset simulation runs (4000 total samples, conditional level 0.1)
yielded a failure probability of ~3.04125 × 10?7 with high statistical stability. A
sensitivity analysis using ±5% perturbations revealed ground speed as the most
influential parameter, followed by pitch and angle of attack. These findings
highlight that hard landing risk is dominated by parameters controlling vertical
energy state, emphasizing the importance of precise speed control and pilot
technique during flare. The method offers a robust approach for assessing rare-event
risks in aviation safety.
Perpustakaan Digital ITB