COVER Alexander Adiyasa
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
BAB 1 Alexander Adiyasa
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
BAB 2 Alexander Adiyasa
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
BAB 3 Alexander Adiyasa
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
BAB 4 Alexander Adiyasa
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
BAB 5 Alexander Adiyasa
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
DAFTAR PUSTAKA Alexander Adiyasa
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
LAMPIRAN Alexander Adiyasa
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
Shipboard landing of Vertical Take-Off and Landing (VTOL) aircraft presents
significant control challenges due to limited deck space, ship motion, and harsh
sea conditions. This thesis develops a gain-scheduled Linear Quadratic Regulator
(LQR) tracking controller for a tilt-rotor UAV to enable precise and autonomous
deck landings. The controller combines state-feedback stabilization with integral
action to minimize tracking errors relative to the moving ship deck while
respecting actuator constraints. To address the UAV’s highly nonlinear dynamics
during the transition from forward flight to hover, multiple linearized models
are generated across a range of rotor tilt angles and airspeeds. Individual LQR
gain matrices are designed for each operating condition and scheduled in real
time based on the vehicle’s flight regime. This gain scheduling approach ensures
smooth controller adaptation, maintaining optimal performance throughout the
entire landing maneuver. Implemented within a MATLAB/Simulink environment
with coupled UAV and ship motion, the proposed control system demonstrates reliable
trajectory tracking and stability under realistic sea state disturbances. The
results show that the gain-scheduled LQR strategy enables landings with vertical
impact velocities below 0.2 m/s and achieves position tracking errors within
2?3 cm in the longitudinal direction, ensuring safe and accurate autonomous
recovery of tilt-rotor UAVs in maritime operations.
Perpustakaan Digital ITB