Abstrak - Bevan Bintang Setiawarman
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
BAB 1 Bevan Bintang Setiawarman
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
BAB 2 Bevan Bintang Setiawarman
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
BAB 3 Bevan Bintang Setiawarman
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
BAB 4 Bevan Bintang Setiawarman
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
BAB 5 Bevan Bintang Setiawarman
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
COVER Bevan Bintang Setiawarman
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
DAFTAR PUSTAKA Bevan Bintang Setiawarman
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
LAMPIRAN Bevan Bintang Setiawarman
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
Controlling tilt-rotor Vertical Take-Off and Landing (VTOL) UAVs presents a
significant challenge due to their complex and rapidly changing flight dynamics,
particularly during the transition between hover and forward flight. Traditional
controllers often struggle with these nonlinearities and can be rendered ineffective
by environmental disturbances and model inaccuracies [1]. Although neural networks
can model these complex dynamics, they often require large datasets which
are risky and expensive to obtain. Hence in this thesis, a controller for a VTOL
tilt rotor UAV is proposed, utilizing the reinforcement learning Proximal Policy
Optimization (PPO) algorithm. PPO algorithm is chosen for its superior performance
compared to other reinforcement learning algorithms [2]. In SIMULINK,
a model of the UAV and the environment is created. The agent (controller) is
created and trained in MATLAB. The results show that the trained controller is
able to stabilize the UAV and track ground speed and altitude reference signals.
Batch simulations also show small performance degradation under varied system
parameters. In conclusion, reinforcement learning, particularly PPO has shown
to be a worthy alternative to other nonlinear control methods in controlling the
Raybe Tilt Rotor UAV.
Perpustakaan Digital ITB