Metasurfacesareengineeredsub-wavelengthstructureswithextraordinaryopticalproper-
ties surpassingconventionaloptics,enablingprecisewavefrontcontrolandimaging.How-
ever, traditionalforward-designapproachesoftensuffersfromlimitationssuchaslownu-
mericalaperturesatnarrowoperatingbandwidths,reducingtheirefficiencyandapplicabil-
ity. Thisresearchdevelopsamulti-materialtopologyoptimization(MMTO)frameworkto
addressopticalchallengesthroughadvancedinverse-designmethodologies.Byincorporat-
ing full-wavedeviceoptimization,theproposedframeworkisabletominimizeefficiency
losses anddemonstratehowmulti-materialoptimizationwithinopticalsystemsenable
material-specificdesigns,uncoveringnon-intuitive,high-performanceopticaldevices.Ad-
ditionally,thePolynomialChaosExpansion-ParetoOptimalTracing(PCE-POT)meta-
modelisemployedtoachieverobustaplanaticandachromaticlensdesigns,leveraging
efficient computationofSobol’indicestoquantifysensitivitiestouncertainparameters.
ResultsrevealthatMMTOintroducesgreaterrefractiveopticalcontrolinmetasurfaces,
traditionallydiffraction-dominantdevices,toovercomeefficiencylimitationsandenabling
the discoveryofsuperioropticalsystems,particularlyathighnumericalapertures.Asa
conceptualdesigntool,thisframeworksupportsrapid,efficient,andreliabledesignitera-
tions, offeringvaluableinsightsforinformedengineeringdecisions.
Perpustakaan Digital ITB