Abstrak - Nauval Rifky
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
BAB 1 Nauval Rifky
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
BAB 2 Nauval Rifky
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
BAB 3 Nauval Rifky
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
BAB 4 Nauval Rifky
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
BAB 5 Nauval Rifky
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
COVER Nauval Rifky
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
DAFTAR PUSTAKA Nauval Rifky
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
Despite their environmental impact, the global energy demand continues to rely heavily on nonrenewable
energy sources. To achieve a sustainable future, developing renewable energy sources is
essential. Ammonia (????????3) is a promising alternative due to its high hydrogen density and efficient
transportability. Experimental studies on ammonia combustion lag behind those of carbon-based fuels,
leading to gaps in understanding its risks and mitigation strategies. Additionally, ammonia's low
laminar burning flame speed poses practical challenges. Mixing hydrogen (????2) with ammonia can help
achieve a flame speed comparable to that of conventional hydrocarbon fuels. Traditional fuel
combustion experiments are costly and require advanced equipment, making them less feasible. This
project will use numerical methods to conduct premixed Ammonia-Hydrogen-Air combustion. Using
OpenFOAM, an open-source Computational Fluid Dynamics (CFD) software, this research employs
Large Eddy Simulation (LES) to capture detailed flame characteristics. The project compares RANS
and LES methods, evaluates four chemical mechanisms: Kaust, Otomo, Tomoaki, and GRI 3.0, and
examines the effects of reducing chemical mechanisms, also various equivalence ratios. Simulations
are conducted using a reference burner. The findings indicate that LES is superior in generating
turbulence and species distribution which is shown by the more distributed Q-criterion value. The
Otomo mechanism is the most accurate compared to an experimental value, which generates 800 to
1200 dry PPM. The equivalence ratio of 0.8 produces the most NO emissions with a generation of 1200
PPM, and reducing mechanisms is not preferable because it increases NO emission up to 33%.