digilib@itb.ac.id +62 812 2508 8800

Abstrak - Andi Almirah Azaria
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan

COVER - Andi Almirah Azaria
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan

BAB 1 - Andi Almirah Azaria
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan

BAB 2 - Andi Almirah Azaria
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan

BAB 3 - Andi Almirah Azaria
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan

BAB 4 - Andi Almirah Azaria
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan

BAB 5 - Andi Almirah Azaria
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan

DAFTAR PUSTAKA - Andi Almirah Azaria
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan

LAMPIRAN - Andi Almirah Azaria
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan

Delamination is a critical failure mode in fiber-reinforced polymer composites, often causing severe structural issues. This study develops and validates a finite element model (FEM) to simulate how transverse fiber bridging affects fracture toughness in unidirectional carbon fiber reinforced polymer (CFRP) composites during Double Cantilever Beam (DCB) tests. The model uses shell elements to represent the bending behavior and rotational effects of bridging fibers, with cohesive interactions assigned through a Weibull distribution to capture variability in interfacial properties. Validation was conducted using experimental data from Ping Hu et al. The simulation results without fiber bridging aligned well with analytical predictions, while the inclusion of fiber bridging reproduced experimental trends such as increased fracture toughness and load–displacement curve fluctuations. Parametric analysis revealed that greater specimen width and smaller bridging dimensions both enhanced toughness. Overall, the validated FEM provides insights for optimizing fiber bridging to improve the damage resistance of composites.