BAB 1 Nayottama Putra Suherman
Terbatas  Alice Diniarti
» Gedung UPT Perpustakaan
Terbatas  Alice Diniarti
» Gedung UPT Perpustakaan
BAB 2 Nayottama Putra Suherman
Terbatas  Alice Diniarti
» Gedung UPT Perpustakaan
Terbatas  Alice Diniarti
» Gedung UPT Perpustakaan
BAB 3 Nayottama Putra Suherman
Terbatas  Alice Diniarti
» Gedung UPT Perpustakaan
Terbatas  Alice Diniarti
» Gedung UPT Perpustakaan
BAB 4 Nayottama Putra Suherman
Terbatas  Alice Diniarti
» Gedung UPT Perpustakaan
Terbatas  Alice Diniarti
» Gedung UPT Perpustakaan
BAB 5 Nayottama Putra Suherman
Terbatas  Alice Diniarti
» Gedung UPT Perpustakaan
Terbatas  Alice Diniarti
» Gedung UPT Perpustakaan
PUSTAKA Nayottama Putra Suherman
Terbatas  Alice Diniarti
» Gedung UPT Perpustakaan
Terbatas  Alice Diniarti
» Gedung UPT Perpustakaan
The development of computer vision have a purpose to to create autonomous
system which could perform visual tasks that even might surpass human’s performance with the emerging popular approach is using convolutional neural
network (CNN). In aerospace engineering field, there are wondrous possibilities of computer vision application, like for maintenance, research, military,
and aircraft control. Utilizing CNN, this work would solve one engineering
case, which is recognizing crack in concrete surface, and one non-engineering
case, which is recognizing and classifying types of tumor. The model would
compromised of established convolutional architectures combined with the author’s proposed classifying architecture. The work compare four different convolutional architectures performance, which are VGG16, DenseNet201, InceptionV3, and EfficientNetV2S. This work also investigate the feature highlight
of the model using SmoothGrad saliency map and Grad-CAM. The result of
this work is that for the binary classification of the concrete crack case, the best
model to use is the one using VGG16 while for the categorical classification of
the brain tumor case the best model to use is the one using EfficientNetv2S.
The consideration in these recommendation is the quantitative classifying performance and the model’s feature highlight.
Perpustakaan Digital ITB