Abstrak - Adhiatma Dipa Pradana
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
COVER Adhiatma Dipa Pradana
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
BAB 1 Adhiatma Dipa Pradana
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
BAB 2 Adhiatma Dipa Pradana
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
BAB 3 Adhiatma Dipa Pradana
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
BAB 4 Adhiatma Dipa Pradana
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
BAB 5 Adhiatma Dipa Pradana
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
DAFTAR PUSTAKA Adhiatma Dipa Pradana
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
LAMPIRAN Adhiatma Dipa Pradana
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
Engine mounts play a crucial role in minimizing the transmission of engine-induced vibrations to the vehicle chassis. Conventional rubber mounts often lack adaptability to varying dynamic conditions, prompting the exploration of semi-active systems such as those utilizing magnetorheological (MR) fluids. This study presents an experimental and analytical investigation of MR fluid-based engine mounts for vibration cancellation.
The experimental approach involved testing three MR mounts under different electrical currents (0 A, 1 A, and 2 A) using a damper dynamometer to collect time-history data of force, displacement, and velocity. For the analytical approach, the Modified Bouc-Wen model was employed to simulate the nonlinear hysteretic behavior of the MR mounts. Parameter fitting was conducted using MATLAB to align the model with the experimental data.
The results indicate that applying electrical current significantly influences the damping characteristics of the MR fluid, with higher currents yielding increased force responses and enhanced vibration suppression. The Modified Bouc-Wen model effectively captured the hysteresis loops and showed strong agreement with the experimental data, validating its suitability for modeling MR fluid behavior.
In conclusion, MR fluid engine mounts exhibit strong potential as tunable vibration isolators for automotive applications. The successful integration of experimental data with nonlinear modeling supports the development of smart suspension components capable of adapting to real-time operating conditions.
Perpustakaan Digital ITB