
Abstrak - William Rasendriya
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan

COVER - William Rasendriya
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan

BAB I - William Rasendriya
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan

BAB II - William Rasendriya
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan

BAB III - William Rasendriya
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan

BAB IV - William Rasendriya
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan

BAB V - William Rasendriya
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan

PUSTAKA - William Rasendriya
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan

LAMPIRAN - William Rasendriya
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
Composite materials have become essential in modern engineering due to their exceptional
strength-to-weight ratio and adaptability. Among these, carbon/epoxy composites are widely
utilized in high-velocity impact application. However, the need of better performing
composites is growing. One prominent technique is to insert interface layer between the
plies. Hence, the effect of Polycarbonate (PC) and Polyvinyl Butheral-Phenolic (PVB)
interface addition to the ballistic performance of Carbon/Epoxy composites is studied.
Using numerical simulations in Abaqus CAE, meso-scale models were impacted with 9 mm
Pindad MU1-TJ projectile at initial velocity of 350 m/s to assess energy absorption and
damage mechanisms. Mesh sensitivity analysis and model validation was carried to ensure
the accuracy of the results.
Each model was successfully simulated and analyzed. The results indicate that woven
carbon/epoxy composites effectively dissipate impact energy through fiber failure, matrix
cracking, and delamination, with an energy absorption of approximately 58–59 J. Interface
modifications were explored to optimize performance, revealing that checkerboardpatterned
interfaces significantly improve damage control and energy dissipation. Among
the tested configurations, the PCCB-2N demonstrated the highest energy absorption (59.6 J)
and superior damage mitigation.