2020 EJRNL PP Hailey J. Knox -1.pdf
Terbatas Irwan Sofiyan
» ITB
Terbatas Irwan Sofiyan
» ITB
Photoacoustic imaging (PAI) is a powerful imaging modality capable of mapping the absorption of light in
biological tissue via the PA effect. When chromophores are optically excited, subsequent energy loss in the form of heat generates local thermoelastic expansion. Repeated excitation from a pulsed laser induces pressure fluctuations that propagate through tissue and can be detected as ultrasound waves. By combining ultrasonic detection with optical excitation, PAI enables high-resolution image acquisition at centimeter depths. PAI is also relatively inexpensive and relies on safe, nonionizing excitation light in the near-infrared window, making it an attractive alternative to other common biomedical imaging modalities.
Research in our group is aimed at developing small-molecule activatable probes that can be used for analyte detection in deep tissue via PAI. These probes contain reactive triggers that undergo a selective chemical reaction in the presence of specific stimuli to produce a spectral change that can be observed via PAI. Chemically tuning the absorbance profile of the probe and the reacted product such that they are both within the PA imaging window enables ratiometric imaging when each species is irradiated at a specific wavelength. Ratiometric imaging is an important design feature of these probes as it minimizes error associated with tissue-dependent signal fluctuations and instrumental variation.
Perpustakaan Digital ITB