Abstrak - Avatar Sargamantha Ndoen
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
BAB 1 Avatar Sargamantha Ndoen
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
BAB 2 Avatar Sargamantha Ndoen
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
BAB 3 Avatar Sargamantha Ndoen
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
BAB 4 Avatar Sargamantha Ndoen
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
BAB 5 Avatar Sargamantha Ndoen
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
COVER Avatar Sargamantha Ndoen
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
DAFTAR PUSTAKA Avatar Sargamantha Ndoen
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
LAMPIRAN Avatar Sargamantha Ndoen
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
In Indonesia, the rising prevalence of upper-limb amputations, driven by traffic accidents,
industrial injuries, and diabetes, creates an urgent need for prosthetic wrists that are affordable,
locally manufacturable, and biomechanically effective. Conventional devices depend on bulky, rigid
linkages and rarely replicate natural wrist kinematics.
This study introduces a compliant, two-degree-of-freedom (2-DoF) prosthetic wrist that uses
elastic deformation to deliver smooth, lightweight, and durable motion. A fully parametric CAD
model was scripted in SolidWorks, enabling automated generation of thousands of design variants.
Each variant was then analysed in a lights-out ANSYS Mechanical pipeline, where ACT scripts
applied meshing, material assignments, boundary conditions, and post-processing without user
intervention.
Key mechanical outputs, directional stiffness and range of motion (RoM), were extracted to
train machine-learning surrogate models. These surrogates were fine-tuned with Optuna
hyper-parameter optimisation and further enhanced via stacked ensemble learning. Embedded in a
Unified Non-dominated Sorting Genetic Algorithm III (UNSGA-III) multi-objective framework,
the surrogates enabled high-throughput optimisation, with design selection guided by hyper-volume
contribution to balance stiffness and RoM.
Five optimal candidates spanning paediatric to adult wrist sizes, representing user-specific
customization across a broad anthropometric spectrum, were fabricated in PETG and validated
experimentally. High-fidelity simulations and bench tests confirmed full directional RoM
(? 85° flexion, 80° extension, 35° radial, 40° ulnar) with von Mises stresses safely below 35 MPa.
Average ANSYS–experiment deviations were ? 3 % in most metrics; larger errors in flexion-final
and radial-final moments highlighted areas for future surrogate retraining.
The resulting wrists are fully 3D-printable, low-cost, and adaptable across users, with
stiffness and size parameters customizable for individual needs. This demonstrates that a
simulation-driven, data-centric workflow can deliver advanced prosthetic solutions in
resource-constrained settings. Beyond prosthetics, the integrated CAD-FEA-ML-optimisation
pipeline is transferable to compliant mechanisms in aerospace, automotive, and general industrial
design.
Perpustakaan Digital ITB