ABSTRAK Aisyah Zuhrifa Amani
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
BAB 1 Aisyah Zuhrifa Amani
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
BAB 2 Aisyah Zuhrifa Amani
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
BAB 3 Aisyah Zuhrifa Amani
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
BAB 4 Aisyah Zuhrifa Amani
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
BAB 5 Aisyah Zuhrifa Amani
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
COVER Aisyah Zuhrifa Amani
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
DAFTAR PUSTAKA Aisyah Zuhrifa Amani
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
LAMPIRAN Aisyah Zuhrifa Amani
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
The advanced flapping mechanisms of birds and insects have inspired the creation
of bioinspired Micro Aerial Vehicles (MAVs). Despite progress in replicating
their wing kinematics, artificial MAVs still fall short compared to their
natural counterparts refined over millions of years of evolution. Further exploration
of wing kinematics and aerodynamic investigations is essential for
enhancing MAV design. This thesis presents an optimisation study of 3D flapping
wing kinematics under hovering conditions, aiming to find the optimal
kinematics that maximise lift and examine their impact on lift production.
The NNPEHGP model predicts the black-box function of the wing model’s
kinematics parameters and the time-averaged lift coefficient (CL). Optimisation
focuses on two kinematics parameters: rotational timing and rotational
duration. The analysis shows that peak lift happens when the wing undergoes
delayed rotation, but advanced rotation provides more consistent performance
across various rotational durations, indicating a trade-off between peak performance
and robustness. The analysis of rotational duration indicates its minor
influence compared to rotational timing but becomes more significant when rotational
timing involves delayed rotation or positive values. Furthermore, it is
found that three-dimensionality and motion models affect wing lift production.