digilib@itb.ac.id +62 812 2508 8800

Nanocomposite anode materials for water oxidation have been readily synthesized by electrodeposition of iridium oxide nanoparticles into poly(pyrrole-alkylammonium) films, previously deposited onto carbon electrodes by oxidative electropolymerization of a pyrrole-alkylammonium monomer. The nanocomposite films were characterized by electrochemistry, transmission electron microscopy, and atomic force microscopy. They showed an efficient electrocatalytic activity toward the oxygen evolution reaction. Data from Tafel plots have demonstrated that the catalytic activity of the iridium oxide nanoparticles is maintained following their inclusion in the polymer matrix. Bulk electrolysis of water at carbon foam modified electrodes have shown that the iridium oxide?polymer composite presents a higher catalytic activity and a better operational stability than regular oxide films