COVER Muhammad Nurrafi Ihsan
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
BAB 1 Muhammad Nurrafi Ihsan
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
BAB 2 Muhammad Nurrafi Ihsan
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
BAB 3 Muhammad Nurrafi Ihsan
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
BAB 4 Muhammad Nurrafi Ihsan
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
BAB 5 Muhammad Nurrafi Ihsan
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
PUSTAKA Muhammad Nurrafi Ihsan
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
The primary objective of this research is to design and optimize anti-climber
structures for a light rail transit (LRT) crash energy absorbing system to im-
prove its passive safety performance. The anti-climber device reduces the risk
of overriding for rail vehicles in case of a car-to-car accident. This research
studies the in
uence of the anti-climber device on the system's crashworthi-
ness and estimates the optimum conguration to achieve the best crash energy
absorbing and crashbox deforming performances.
The base model of the LRT's front-end cab is adapted from the existing
designs of the LRT Jabodebek conguration. The anti-climber model is mod-
ied into several variations, to which design factors are assigned based on the
L16 orthogonal array. Then, the optimum anti-climber conguration is esti-
mated using Taguchi's Robust Parameter method. The controlled variables
are analyzed for their in
uence on the performance using the Analysis of Vari-
ance (ANOVA) method. The results show that the optimum conguration
for the system's crash energy absorbing and crashbox deforming performances
are toothed ends-Al6061-T6-30 mm-lower oset and toothed ends-Al6061-T6-
20 mm-lower oset, respectively. The most in
uential factor for the system's
crash energy absorbing performance is the anti-climber material at 29.79%
contribution. On the other hand, teeth thickness is the most in
uential factor
to the crashbox deforming performance at 50.26% contribution. The optimiza-
tion estimates the system's energy-absorbing performance to improve by 1.5
dB gain and the crashbox deforming performance by 3.3 dB gain.