digilib@itb.ac.id +62 812 2508 8800

2020 EJRNL PP Swati Kaushik - 1.pdf
Terbatas Irwan Sofiyan
» ITB

Despite the promising role of magnetic hyperthermia in cancer therapy, its use in patients has been restricted by hurdles that include inefficient targeting of magnetic particles to the tumor site, limited bioavailability, and high toxicity, etc. Taking advantage of the unique metabolic property of cancer cells, we explored the potential of these cells to biosynthesize magnetic nanoparticles for potential hyperthermia applications. Treatment of cancer cells with a mixture of FeCl2 and zinc gluconate resulted in a significant increase in intracellular Fe and Zn content in these cells. Exposure of these cells to an alternating magnetic field (AMF) for 30 min resulted in a substantial temperature rise of 5?6 °C. The in situ formed particles were identified as iron oxide and ZnO nanoparticles. Based on the magnetic property and size, the iron oxide nanoparticles were classified as superparamagnetic iron oxide nanoparticles (SPIONS) comprising a mixture of magnetite (Fe3-?O4) and maghemite (?-Fe2O3). The role of reactive oxygen species (H2O2) and the involvement of the glycolytic pathway in the biosynthesis of the nanoparticles were confirmed using appropriate in vitro studies. The simplicity of treatment, the specificity of cells capable of synthesis of SPIONS, and the hyperthermia response observed in cancer cells indicate a promising strategy to achieve effective magnetic hyperthermia for cancer therapy.