Abstrak - ANTHONY
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
COVER ANTHONY NATHAN SINISUKA
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
BAB 1 ANTHONY NATHAN SINISUKA
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
BAB 2 ANTHONY NATHAN SINISUKA
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
BAB 3 ANTHONY NATHAN SINISUKA
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
BAB 4 ANTHONY NATHAN SINISUKA
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
BAB 5 ANTHONY NATHAN SINISUKA
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
DAFTAR PUSTAKA ANTHONY NATHAN SINISUKA
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
Understanding and predicting the behavior of complex dynamical systems is a fundamental
challenge across many scientific disciplines. This thesis explores the potential of
Fourier Neural Operators (FNOs) which leverage spectral domain transformations to
capture intricate patterns and dependencies as a surrogate of conventional numerical
solvers. This research focuses on four distinct dynamical systems: the Kraichnan-
Orszag three-mode problem, the Lorenz system, the Kuramoto-Sivashinsky (KS)
equations, and the diffusion-advection problem. By systematically varying the FNO
model architecture—particularly the number of Fourier modes and hidden layers—the
study demonstrates that increasing model complexity generally enhances predictive
accuracy. This enhancement allows the FNO to more effectively capture the nonlinear
interactions and chaotic dynamics inherent in these systems. For instance, the model
successfully predicts trajectories in the Kraichnan-Orszag problem, the Lorenz system,
and the KS equations, while it performs well in forecasting predictions for the Lorenz
system, its efficacy diminishes over longer time horizons. The thesis also underscores
the critical role of training data size. Larger datasets significantly bolster the model’s
performance, underscoring the importance of robust data collection in developing
effective predictive models. Despite some challenges, such as error accumulation in
recursive predictions for the advection-diffusion problem, the findings establish FNOs
as a formidable tool for tackling complex dynamical systems.