ABSTRAK Laurentius Laksamana P S
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
BAB I_LaurentiusLPS.pdf
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
BAB II_LaurentiusLPS.pdf
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
COVER_LaurentiusLPS.pdf
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
BAB III_LaurentiusLPS.pdf
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
BAB III_LaurentiusLPS.pdf
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
BAB IV_LaurentiusLPS.pdf
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
BAB V_LaurentiusLPS.pdf
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
PUSTAKA Laurentius Laksamana P S
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
In recent years, the growing concern over global warming and climate change
has spurred a heightened demand for environmentally sustainable transportation
solutions. The aviation industry, recognized as a significant contributor to
greenhouse gas emissions, faces pressure to adopt eco-friendly alternatives. Although
electric aircraft have emerged as a promising option, their widespread
adoption remains hindered by limitations in battery capacity and charging
times. An innovative alternative to exclusively relying on batteries for electric
aircraft propulsion is the incorporation of ultra-micro gas turbines (UMGTs)
to generate onboard electricity during flight. These UMGTs utilize natural
gases, such as propane, butane, or their combinations, as a fuel source. Natural
gases are favored due to their superior energy density compared to batteries
and relatively lower emissions compared to conventional jet fuels. However, the
design and manufacturing of UMGT components, particularly the compressor
and turbine blades, entail significant costs and time investments. To address
these challenges and streamline UMGT development, this thesis focuses on the
design of the UMGT combustor. Two distinct combustor designs have been
developed, one adhering to a conventional configuration and another adopting
a reverse flow layout. In line with predefined design criteria and specifications,
the final geometry of the straight-through combustor exhibits a pattern factor
of 0.20 and a pressure loss of 5.56%, encompassing a total length of 179.2 mm.
Conversely, the ultimate configuration of the reverse flow combustor achieves
a pattern factor of 0.20 and a pressure loss of 5.95%, with a total length of
115 mm. These findings contribute to the advancement of UMGT technology,
offering cost-effective and efficient solutions for sustainable aviation in the face
of environmental challenges.