ABSTRAK Syahrir Ginanjar
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
COVER Syahrir Ginanjar
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
BAB1 Syahrir Ginanjar
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
BAB2 Syahrir Ginanjar
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
BAB3 Syahrir Ginanjar
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
BAB4 Syahrir Ginanjar
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
BAB5 Syahrir Ginanjar
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
BAB6 Syahrir Ginanjar
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
PUSTAKA Syahrir Ginanjar
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
Point collocation method becomes popular in engineering design and analysis.
It offers a significant advantage by employing a discretized strong form, where
the governing Partial Differential Equations (PDE) and boundary conditions of
the problem are enforced at discrete collocation points instead of being averaged
over the domain, as is the case in a weak form approach.
Generating mollified basis functions offers several advantages in terms of
their ease of construction, flexibility in degrees and smoothness, and ability to
handle arbitrary partitions. These basis functions are constructed through the
convolution of piecewise polynomials defined within cells and a selected smooth
kernel or mollifier. The mollifier is chosen to be smooth, have compact support,
and possess a unit volume. The resulting properties of the basis functions
are governed by the smoothness of the mollifier and the local polynomial
approximation order.
Since mollified basis functions have arbitrary high order, smoothness, and
available to set arbitrary polynomial order in each cells, The local refinement
becomes one way to improve the efficiency of mollified collocation method, two
of them are p-adaptivity which can be analyzed by setting different polynomial
order in one simulation and h-refinement. The h-refinement study begins
with the regularisation of Voronoi diagram using Lloyds algorithm. Also, the
effect of p-adaptivity will be analyzed by evaluating the convergence error in
simulating linear elasticity plate with hole problem.