Based on the similarity in the underlying mechanisms between electrical and hydraulic conduction in porous
media, Archie's equation can be combinedwith the Kozeny-Carman (KC) equation to estimate the hydraulic conductivity
(K) of coarse-grained soils. However, the assumption of the exponent m in Archie's equation, which is
equivalent to the assumed porosity at specific soil electrical properties, reduces the accuracy of the value of K predicted
using the combination of Archie's equation and the KC equation. Therefore, this study introduces a depolarization
factor, which allows the exponent m in Archie's equation to be estimated from the shape of the
particles. Consequently, this study proposes a formula for estimating K for coarse-grained soils based on the combination
of Archie's equation, the KC equation, and the depolarization factor. Data from laboratory experiments
performed in this work and available data from the literature were used to validate the proposed model. In addition,
the optimal value for the exponent m was recommended for predicting hydraulic conductivity using
the proposed K estimating formula in the absence of particle shape data. Data obtained in the experiments and
literature revealed that the proposed model is comparatively reliable in predicting K.