digilib@itb.ac.id +62 812 2508 8800

2019_EJRNL_PP_RAHIL_CHANGOTRA_1.pdf
Terbatas Lili Sawaludin Mulyadi
» ITB

The pharmaceutical wastewater of different organic loads i.e. high (HSW) and low strength wastewater (LSW) were collected from the bulk pharmaceutical industry and subjected to different applications of Fenton’s treatment followed by subsequent biological treatment. For both the HSW and LSW, applications of Fenton such as, dark-Fenton (DF), solar driven photoFenton (PF) and electro-Fenton (EF) were utilized as pre-treatment technologies to improve the biodegradability and reduce the organic load of wastewater by combine oxidation and coagulation. The operational parameters like pH, hydrogen peroxide dosage and iron concentration were optimized in case of DF and PF processes, whereas in case of EF process, applied voltage and hydrogen peroxide dosage were optimized to make water biocompatible for subsequent biological degradation. The use of Fenton applications as a pre-treatment resulted in a significant enhancement in the BOD5/COD ratio validating the production of easily degradable metabolites or secondary products. Overall results indicated that among the utilized Fenton technologies, pre-treatment of pharmaceutical wastewater with PF lead to better COD and TOC removal efficiency with subsequent biological degradation when compared to DF and EF pretreatment. Overall COD removal efficiency of the combined PF and biological treatment was around 84% for LSW and 82% for HSW. Conclusively, it can be established that combined Fenton applications as pretreatment technology and biological treatment is more effective approach in comparison to single stage oxidation either by Fenton or biological treatment. Cytotoxicity assessment revealed that complete detoxification of wastewaters were achieved indicating that hybrid treatment technology of Fenton’s and biological treatment did not exhibited any toxicity against the selected microbes.