
Abstrak - Vanness Livaldo
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan

BAB 1 Vanness Livaldo
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan

BAB 2 Vanness Livaldo
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan

BAB 3 Vanness Livaldo
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan

BAB 4 Vanness Livaldo
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan

BAB 5 Vanness Livaldo
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan

COVER Vanness Livaldo
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan

DAFTAR PUSTAKA Vanness Livaldo
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan

LAMPIRAN Vanness Livaldo
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
Terbatas  Irwan Sofiyan
» Gedung UPT Perpustakaan
This study investigates the optimization of 3D printing parameters to replicate the dimensional accuracy and functionality of injection-molded gears using thermoplastic materials such as PETG, ABS, and PET-CF. The research focuses on three critical parameters: printing temperature, wall layer sequence, and line width. These parameters are evaluated for their impact on dimensional accuracy, with measurements conducted pre- and post-operational tests using a Video Measuring Machine (VMM).
The results highlight temperature as the most influential factor in controlling dimensional changes, with PET-CF exhibiting significant shrinkage at higher temperatures, ABS showing optimal performance within a specific range (260–270°C), and PETG demonstrating stability with slight shrinkage at elevated temperatures. Line width had a negligible impact on dimensional accuracy, while wall layer sequence significantly influenced the outer and root radii, with the out/in sequence preserving dimensions more effectively.
While 3D-printed gears approached the dimensional accuracy of the original injection-molded POM gears, some limitations in mechanical properties, such as fatigue life, were observed. Despite these limitations, the study underscores the feasibility of 3D printing as a cost-effective and flexible alternative for producing functional mechanical components. These findings provide practical guidelines for optimizing 3D printing processes and contribute to advancing additive manufacturing in industrial applications.