Hasil Ringkasan
EFFECT OF MICRO-NANO SIZE PARTICLES ADDI TIVES IN PURE PALM OIL FUELLED INDIRECT INJECTION DIESEL ENGINE PERFORMANCES AND EMISSIONS DISSERTATION In partial fulfillment of the requirements for the Degree of Doctor of Philosophy from Institut Teknologi Bandung By RICO ADITIA PRAHMANA Student ID: 33120304 (Doctoral Program in Mechanical Engineering) INSTITUT TEKNOLOGI BANDUNG February 2025 Koleksi digital milik UPT Perpustakaan ITB untuk keperluan pendidikan dan penelitian Koleksi digital milik UPT Perpustakaan ITB untuk keperluan pendidikan dan penelitian i ABSTRACT EFFECT OF MICRO-NANO SIZE PARTICLES ADD ITIVES IN PURE PALM OIL FUELLED INDIRECT INJECTION DIESEL ENGINE PERFORMANCES AND EMISSIONS By Rico Aditia Prahmana Student ID: 33120304 (Doctoral Program in Mechanical Engineering) This study explores the potential of micro nanoparticles as additives to enhance diesel engine performance and reduce environmental pollutants, explicitly focusing on pure palm oil (PPaO) as a biofuel alternative. The additives investigated include acetylene black (AB), graphite oxide (GO), multiwalled carbon nanotubes (MWCNT), reduced graphene oxide (RgO), goethite (FeOOH), silicon dioxide (SiO₂), and zinc oxide (ZnO). These particles were selected for their thermodynamic stability, catalytic properties, and ability to improve fuel atomization and combustion processes. A comprehensive approach was employed in this study, involving spray experiments captured through high-speed cameras to analyze fuel atomization and spray behavior under various conditions. The fuel and additives were thoroughly characterized using Particle Size Analysis (PSA), Fourier-Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM), and X-ray Diffraction (XRD). In addition, high-speed imaging was used to evaluate spray characteristics, while engine performance was assessed through tests measuring power output, specific fuel consumption, and emission levels. Computational Fluid Dynamics (CFD) simulations were conducted to provide detailed insights into different fuel blends' atomization and combustion processes. The results showed that using PPaO significantly increased smoke opacity by approximately 127.63% compared to diesel fuel (DF), indicating incomplete combustion and higher particulate emissions. However, the addition of goethite (PPaOGOE) resulted in a substantial reduction in smoke opacity, achieving a maximum reduction of 64.21% relative to DF. This underscores the effectiveness of PPaOGOE as an additive for emission control. Regarding specific fuel consumption (SFC), the PPaOMWCNT blend improved fuel efficiency by reducing smoke opacity to nearly the same level as DF. Additionally, PPaOGO showed notable improvements in spray penetration, enhancing the combustion process and fuel distribution. These findings highlight the potential of carefully selected additives like PPaOGOE and PPaOMWCNT to optimize diesel engine performance and emissions while reducing environmental pollutants. Keywords: Diesel Engine, Pure Palm Oil, Engine Performance, Spray Characteristic, Additives of Micro-Nanoparticles. Koleksi digital milik UPT Perpustakaan ITB untuk keperluan pendidikan dan penelitian ii ABSTRAK PENGARUH PENAMBAHAN ADITIVES PARTIKEL BERUKURAN MIKRO -NANO PADA KINERJA DAN EMISI MESIN DIESEL INJEKSI TIDAK LANGSUNG YANG MENGGUNAKAN BAHAN BAKAR MINYAK SAWIT MURNI Oleh Rico Aditia Prahmana NIM: 33120304 (Program Studi Teknik Mesin) Studi dalam penelitian ini mengeksplorasi potensi penggunaan mikro dan nanopartikel sebagai aditif untuk meningkatkan kinerja mesin diesel dan mengurangi polusi lingkungan, dengan fokus khusus pada minyak kelapa sawit murni (PPaO) sebagai alternatif bahan bakar nabati. Aditif yang diuji meliputi acetylene black (AB), graphite oxide (GO), multiwalled carbon nanotubes (MWCNT), reduced graphene oxide (RgO), goethite (FeOOH), silicon dioxide (SiO₂), dan zinc oxide (ZnO). Partikel-partikel ini dipilih berdasarkan stabilitas termodinamiknya, sifat katalitik, dan kemampuannya dalam meningkatkan atomisasi bahan bakar serta proses pembakaran. Pendekatan komprehensif digunakan dalam penelitian ini, termasuk eksperimen semprotan bahan bakar yang direkam menggunakan kamera berkecepatan tinggi untuk menganalisis atomisasi bahan bakar dan perilaku semprotan dalam berbagai kondisi. Bahan bakar dan aditif dikarakterisasi secara menyeluruh menggunakan Particle Size Analysis (PSA), Fourier-Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM), dan X-ray Diffraction (XRD). Selain itu, karakteristik semprotan dievaluasi menggunakan pencitraan kecepatan tinggi, sementara kinerja mesin dinilai melalui pengujian yang melibatkan output daya, konsumsi bahan bakar spesifik (SFC), dan tingkat emisi.