Hasil Ringkasan
PUSTAKA Iqbal Eras Putra

Jumlah halaman: 6 · Jumlah kalimat ringkasan: 30

97 DAFTAR PUSTAKA Ahmad, A., Kalsom Mohd Hashim, U., Mohd, O., Mawardy Abdullah, M., Teknologi Maklumat Dan Komunikasi, F., Sakidin, H., Wahid Rasib, A., Teknologi Malaysia Johor, U., Suliadi Firdaus Sufahani, M., & Sains Gunaan dan Teknologi Universiti Tun Hussein Onn Malaysia Johor, F. (2018). Comparative Analysis of Support Vector Machine, Maximum Likelihood and Neural Network Classification on Multispectral Remote Sensing Data Centre for Advanced Computing Technology (C-ACT). In IJACSA) International Journal of Advanced Computer Science and Applications (Vol. 9, Issue 9). www.ijacsa.thesai.org Aïkous, M., Dubé, J., Brunelle, C., & Champagne, M. P. (2023). Is highway expansion and impacts on land use changes: An event study approach. Transportation Research Part D: Transport and Environment, 119. https://doi.org/10.1016/j.trd.2023.103730 Akinci, H., & Yavuz Ozalp, A. (2021). Landslide susceptibility mapping and hazard assessment in Artvin (Turkey) using frequency ratio and modified information value model. Acta Geophysica, 69(3), 725–745. https://doi.org/10.1007/s11600-021-00577-7 Badan Pusat Statistik Kabupaten Sumedang. (2024). Kabupaten Sumedang Dalam Angka 2024. Baert, M., Kervyn, M., Kagou, A. D., Guedjeo, C. S., Vranken, L., & Mertens, K. (2020). Resettlement preferences from landslide prone areas in Cameroon: Willingness to move, reasons to stay. Land Use Policy, 95. https://doi.org/10.1016/j.landusepol.2019.04.036 BNPB. (2019). Modul Teknis Penyusunan Kajian Risiko Bencana Tanah Longsor. Bonham-Carter, G. F. (1994). Geographic Information Systems for Geoscientists Modelling with GIS (1st ed.). Love Printing Service Ltd. Breiman, L. (2001). Random Forests. Machine Learning, 45, 5–32. Briassoulis, H. (2020). Analysis of Land Use Change: Theoretical and Modeling Analysis of Land Use Change: Theoretical and Modeling Approaches (S. Loveridge & R. Jackson, Eds.; 2nd edition). WVU Research Repository. https://researchrepository.wvu.edu/rri-web-book Capitani, M., Ribolini, A., & Bini, M. (2013). The slope aspect: A predisposing factor for landsliding. Comptes Rendus - Geoscience, 345(11–12), 427–438. https://doi.org/10.1016/j.crte.2013.11.002 Cellek, S. (2021). Landslides. In Y. Zhang & Q. Cheng (Eds.), Landslides (p. 13). IntechOpen. https://doi.org/http://dx.doi.org/10.5772/intechopen.95641 Creswell, J. (2013). Research Design: Qualitative, Quantitative, and Mixed Method Approaches. 4 th Edition. Crozier, M. J. (2005). Multiple-occurrence regional landslide events in New Zealand: Hazard management issues. Landslides, 2(4), 247–256. https://doi.org/10.1007/s10346-005-0019-7 98 Cruden, D. M., & Varnes, D. J. (1996). Landslide Types and Processes. In Transportation Research Board, U.S. National Academy of Sciences, Special Report (Vol. 247). https://www.researchgate.net/publication/269710331 Dai, H., Zhang, H., Dai, H., Wang, C., Tang, W., Zou, L., & Tang, Y. (2022). Landslide Identification and Gradation Method Based on Statistical Analysis and Spatial Cluster Analysis. Remote Sensing, 14(18). https://doi.org/10.3390/rs14184504 Dandridge, C., Stanley, T., Kirschbaum, D., Amatya, P., & Lakshmi, V. (2023). The influence of land use and land cover change on landslide susceptibility in the Lower Mekong River Basin. Natural Hazards, 115(2), 1499–1523. https://doi.org/10.1007/s11069-022-05604-4 Daneykin, Y., Erznkyan, B. A., Ivanova, O. P., Trifonov, V. A., & Belchik, T. A. (2021). Forecasting the Contribution of Universities to Urban Development. International Scientific and Practical Conference “Russia 2020-a New Reality: Economy and Society”(ISPCR 2020) (Pp. 59-62). Atlantis Press. Duarte, D., & Fonte, C. C. (2024). Combining readily available population and land cover maps to generate non-residential built-up labels to train Sentinel-2 image segmentation models. International Journal of Applied Earth Observation and Geoinformation, 135, 104272. Erener, A., Mutlu, A., & Sebnem Düzgün, H. (2016). A comparative study for landslide susceptibility mapping using GIS-based multi-criteria decision analysis (MCDA), logistic regression (LR) and association rule mining (ARM). Engineering Geology , 203, 45 –55. https://doi.org/10.1016/j.enggeo.2015.09.007 Fell, R., Corominas, J., Bonnard, C., Cascini, L., Leroi, E., & Savage, W. Z. (2008).