Hasil Ringkasan
LAMPIRAN Duli Ridlo Istriantono

Jumlah halaman: 70 · Jumlah kalimat ringkasan: 50

95 LAMPIRAN 96 Lampiran A Gardu Traksi dan Stasiun KRL Lintas Jatinegara-Bekasi Stasiun Gardu Traksi Jatinegara Klender Cakung Kranji BekasiKlender BaruBuaran Bekasi TimurJatinegara Cakung KranjiKlender 5650 4970 3199 2003 3015 3700 2940 2515 1384 2475 97 Lampiran B Dasar Perhitungan Energi Auxiliary pada KRL 98 Lampiran C Program MATLAB % Matriks Waktu Keberangkatan Arah Up waktu_keberangkatan12 = zeros(I12, N-1); % Inisialisasi matriks I x N-1 for i = 1:I12 for n = 1:N-1 waktu_keberangkatan12(i, n) = sum(h12(1:i -1)) + sum(D12(1:n-1)) + sum(t12(1:n-1)) + 1; % Perlu +1 karena tidak ada kolom ke-0 end end % Matriks Waktu Keberangkatan Arah Down waktu_keberangkatan21 = zeros(I21, N-1); % Inisialisasi matriks I x N-1 for i = 1:I21 for n = 1:N-1 waktu_keberangkatan21(i, n) = sum(h21(1:i-1)) + sum(D21(1:n-1)) + sum(t21(1:n-1)) + 1; % Perlu +1 karena tidak ada kolom ke-0 end end % Matriks Waktu Keberangkatan Gabungan waktu_keberangkatan = [waktu_keberangkatan12;waktu_keberangkatan21]; % Matriks Switching Point Arah Up accelerating_coasting12 = zeros(I12, N-1); % Inisialisasi matriks I x N- 1 coasting_braking12 = zeros(I12, N-1); % Inisialisasi matriks I x N-1 waktu_kedatangan12 = zeros(I12, N-1); % Inisialisasi matriks I x N-1 for i = 1:I12 for n = 1:N-1 accelerating_coasting12(i, n) = waktu_keberangkatan12(i, n) + ta12(n); coasting_braking12(i, n) = accelerating_coasting12(i, n) + tc12(n); waktu_kedatangan12(i, n) = coasting_braking12(i, n) + tb12(n); end end % Matriks Switching Point Arah Down accelerating_coasting21 = zeros(I21, N-1); % Inisialisasi matriks I x N- 1 coasting_braking21 = zeros(I21, N-1); % Inisialisasi matriks I x N-1 waktu_kedatangan21 = zeros(I21, N-1); % Inisialisasi matriks I x N-1 for i = 1:I21 for n = 1:N-1 accelerating_coasting21(i, n) = waktu_keberangkatan21(i, n) + ta21(n); coasting_braking21(i, n) = accelerating_coasting21(i, n) + tc21(n); waktu_kedatangan21(i, n) = coasting_braking21(i, n) + tb21(n); end end % Matriks Switching Point Gabungan accelerating_coasting = [accelerating_coasting12; accelerating_coasting21]; coasting_braking = [coasting_braking12; coasting_braking21]; waktu_kedatangan = [waktu_kedatangan12; waktu_kedatangan21]; 99 % Matriks Kecepatan Arah Up v1 = zeros(I12, max(waktu_kedatangan12(:, end))); %Inisialisasi matriks I x T for i = 1:I12 % Loop jumlah kereta for j = 1:size(waktu_keberangkatan12, 2) % Loop jumlah waktu keberangkatan if waktu_keberangkatan12(i, j) <= size(v1, 2) % Perbandingan jumlah kolom 1 <= size(v, 2) v1(i, waktu_keberangkatan12(i, 1):(waktu_keberangkatan12(i, 1) + size(v12, 2) - 1)) = v12; % Memasukkan matriks v12 ke v v1(i, waktu_keberangkatan12(i, 2):(waktu_keberangkatan12(i, 2) + size(v23, 2) - 1)) = v23; % Memasukkan matriks v23 ke v v1(i, waktu_keberangkatan12(i, 3):(waktu_keberangkatan12(i, 3) + size(v34, 2) - 1)) = v34; % Memasukkan matriks v23 ke v v1(i, waktu_keberangkatan12(i, 4):(waktu_keberangkatan12(i, 4) + size(v45, 2) - 1)) = v45; % Memasukkan matriks v23 ke v v1(i, waktu_keberangkatan12(i, 5):(waktu_keberangkatan12(i, 5) + size(v56, 2) - 1)) = v56; % Memasukkan matriks v23 ke v v1(i, waktu_keberangkatan12(i, 6):(waktu_keberangkatan12(i, 6) + size(v67, 2) - 1)) = v67; % Memasukkan matriks v23 ke v end end end % Matriks Kecepatan Arah Down v2 = zeros(I21, size(v1,2)); %Inisialisasi matriks I x T for i = 1:I21 % Loop jumlah kereta for j = 1:size(waktu_keberangkatan21, 2) % Loop jumlah waktu keberangkatan if waktu_keberangkatan21(i, j) <= size(v2, 2) % Perbandingan jumlah kolom 1 <= size(v, 2) v2(i, waktu_keberangkatan21(i, 1):(waktu_keberangkatan21(i, 1) + size(v76, 2) - 1)) = v76; % Memasukkan matriks v76 ke v v2(i, waktu_keberangkatan21(i, 2):(waktu_keberangkatan21(i, 2) + size(v65, 2) - 1)) = v65; % Memasukkan matriks v65 ke v v2(i, waktu_keberangkatan21(i, 3):(waktu_keberangkatan21(i, 3) + size(v54, 2) - 1)) = v54; % Memasukkan matriks v54 ke v v2(i, waktu_keberangkatan21(i, 4):(waktu_keberangkatan21(i, 4) + size(v43, 2) - 1)) = v43; % Memasukkan matriks v43 ke v v2(i, waktu_keberangkatan21(i, 5):(waktu_keberangkatan21(i, 5) + size(v32, 2) - 1)) = v32; % Memasukkan matriks v32 ke v v2(i, waktu_keberangkatan21(i, 6):(waktu _keberangkatan21(i, 6) + size(v21, 2) - 1)) = v21; % Memasukkan matriks v21 ke v end end end % Matriks Kecepatan Gabungan minCols = min(size(v1, 2), size(v2, 2)); v1 = v1(:, 1:minCols); v2 = v2(:, 1:minCols); v = [v1; v2]; % Matriks Posisi p1 = cumtrapz(v1, 2); p2 = p1(1, end) - cumtrapz(v2, 2); minCols2 = min(size(p1, 2), size(p2, 2)); 100 p1 = p1(:, 1:minCols2); p2 = p2(:, 1:minCols2); p = [p1; p2]; % Matriks Energi (All) e = zeros(size(v)); for i = 1:I % Loop jumlah kereta for j = 2:length(v) % Loop total waktu delta_v = v(i, j)^2 - v(i, j - 1)^2; energy = 0.5 * m * delta_v * 2.7778e-7; e(i, j) = energy; end end % Matriks Energi Akselerasi e_acc = zeros(size(e)); for i = 1:I % Loop jumlah kereta for j = 1:length(e) % Loop total waktu for k = 1:size(waktu_keberangkatan, 2) if j >= waktu_keberangkatan(i,k) && j <= accelerating_coasting(i,k) e_acc(i, j) = e(i, j); end end end end e_acc = e_acc / eta1; % Matriks Energi Pengereman e_brake = zeros(size(e)); for i = 1:I % Loop jumlah kereta for j = 1:length(e) % Loop total waktu for k = 1:size(coasting_braking, 2) if j >= coasting_braking(i,k) && j <= waktu_kedatangan(i,k) e_brake(i, j) = e(i, j); end end end end e_brake = -e_brake * eta2 * (1 - beta); % Matriks posisi saat akselerasi dan braking dalam satu waktu new_p = zeros(size(p)); for t = 1:length(e_brake) if any(e_acc(:, t) > 0) && any(e_brake(:, t) > 0) new_p(:, t) = p(:, t) .* ((e_brake(:, t) > 0) | (e_acc(:, t) > 0)); end end % Matriks lambda dalam satu supply interval lambda = zeros(size(p)); for i = 1:length(new_p) j = new_p(:, i); % Data setiap kolom for k = 1:length(posisi_awal_supply) if sum(j >= posisi_awal_supply(1, k) & j <= posisi_akhir_supply(1, k)) >= 2 % Cek data setiap kolom dalam rentang supply interval, minimal ada 2 kereta 101 lambda(j >= posisi_awal_supply(1, k) & j <= posisi_akhir_supply(1, k), i) = 1; % Mengembalikan nilai 1 ke dalam matriks lambda end end end % Konsumsi energi e_regenerative_utilization = min(sum(e_brake .* lambda), sum(e_acc .* lambda)); e_consumption = (sum(sum(e_acc)) - sum(e_regenerative_utilization)); disp('Konsumsi Energi:'); disp(e_consumption); 102 Lampiran D Data Optimasi MATLAB D1. Data Optimasi Skema 1 Elapsed time is 5.858868 seconds. OptimizationProblem : Solve for: D12, D21 where: D12, D21 integer minimize : arg1 where: arg1 = model(D12, D21); variable bounds: 15 <= D12(1) <= 60 15 <= D12(2) <= 60 15 <= D12(3) <= 60 15 <= D12(4) <= 60 15 <= D12(5) <= 60 15 <= D21(1) <= 60 15 <= D21(2) <= 60 15 <= D21(3) <= 60 15 <= D21(4) <= 60 15 <= D21(5) <= 60 Solving problem using ga. Single objective optimization: 10 Variables 10 Integer variables Options: CreationFcn: @gacreationuniformint CrossoverFcn: @crossoverlaplace SelectionFcn: @selectiontournament MutationFcn: @mutationpower 103 Elapsed time is 33807.322371 seconds. ga stopped because the average change in the penalty function value is less than options.FunctionTolerance and the constraint violation is less than options.ConstraintTolerance. solution = struct with fields: D12: [33 47 36 55 56] D21: [15 40 40 60 34] reasonSolverStopped = SolverConvergedSuccessfully objectiveValue = 6.9097e+04 104 D2. Data Optimasi Skema 2 Elapsed time is 20467.590141 seconds. pso stopped because the average change in the penalty function value is less than options.FunctionTolerance . solution = struct with fields: D12: [33 58 60 16 59] D21: [15 22 60 39 57] reasonSolverStopped = SolverConvergedSuccessfully objectiveValue = 6.8926e+04 Best Function Value: 68925.9 Iteration 54 Function value 68925.9 105 D3. Data Optimasi Skema 3 Elapsed time is 14.782953 seconds. OptimizationProblem : Solve for: h12 where: h12 integer minimize : model(h12) subject to constraint1: h12(1) + h12(2) + h12(3) + h12(4) + h12(5) + h12(6) + h12(7) + h12(8) + h12(9) + h12(10) + h12(11) + h12(12) + h12(13) + h12(14) + h12(15) + h12(16) + h12(17) + h12(18) + h12(19) + h12(20) + h12(21) + h12(22) + h12(23) + h12(24) + h12(2 5) + h12(26) + h12(27) + h12(28) + h12(29) + h12(30) + h12(31) + h12(32) + h12(33) + h12(34) + h12(35) + h12(36) + h12(37) + h12(38) + h12(39) + h12(40) + h12(41) + h12(42) + h12(43) + h12(44) + h12(45) + h12(46) + h12(47) + h12(48) + h12(49) + h12(5 0) + h12(51) + h12(52) + h12(53) + h12(54) + h12(55) + h12(56) + h12(57) + h12(58) + h12(59) + h12(60) + h12(61) + h12(62) + h12(63) + h12(64) + h12(65) + h12(66) + h12(67) + h12(68) + h12(69) + h12(70) + h12(71) + h12(72) + h12(73) + h12(74) + h12(7 5) + h12(76) + h12(77) + h12(78) + h12(79) + h12(80) + h12(81) + h12(82) + h12(83) + h12(84) + h12(85) + h12(86) + h12(87) + h12(88) + h12(89) + h12(90) + h12(91) + h12(92) + h12(93) + h12(94) + h12(95) + h12(96) + h12(97) + h12(98) + h12(99) + h12(1 00) + h12(101) + h12(102) + h12(103) + h12(104) + h12(105) + h12(106) + h12(107) + h12(108) + h12(109) + h12(110) + h12(111 ) + h12(112) + h12(113) + h12(114) + h12(115) + h12(116) + h12(117) + h12(118) + h12(119) + h12(120) + h12(121) + h12(122) + h12(123) + h12(124) + h12(125) + h12(126) + h12(127) + h12(128) + h12(129) + h12(130) + h12(131) + h12(132) + h12(133) + h12(134) + h12(135) + h12(136) + h12(137) + h12(1 38) + h12(139) + h12(140) + h12(141) + h12(142) + h12(143) + h12(144) + h12(145) + h12(146) + h12(147) + h12(148) + h12(149) >= 72870 subject to constraint2: h12(1) + h12(2) + h12(3) + h12(4) + h12(5) + h12(6) + h12(7) + h12(8) + h12(9) + h12(10) + h12(11) + h12(1 2) + h12(13) + h12(14) + h12(15) + h12(16) + h12(17) + h12(18) + h12(19) + h12(20) + h12(21) + h12(22) + h12(23) + h12(24) + h12(25) + h12(26) + h12(27) + h12(28) + h12(29) + h12( 30) + h12(31) + h12(32) + h12(33) + h12(34) + h12(35) + h12(36) + h12(3 7) + h12(38) + h12(39) 106 + h12(40) + h12(41) + h12(42) + h12(43) + h12(44) + h12(45) + h12(46) + h12(47) + h12(48) + h12(49) + h12(50) + h12(51) + h12(52) + h12(53) + h12(54) + h12( 55) + h12(56) + h12(57) + h12(58) + h12(59) + h12(60) + h12(61) + h12(6 2) + h12(63) + h12(64) + h12(65) + h12(66) + h12(67) + h12(68) + h12(69) + h12(70) + h12(71) + h12(72) + h12(73) + h12(74) + h12(75) + h12(76) + h12(77) + h12(78) + h12(79) + h12(80) + h12(81) + h12(82) + h12(83) + h12(84) + h12(85) + h12(86) + h12(8 7) + h12(88) + h12(89) + h12(90) + h12(91) + h12(92) + h12(93) + h12(94) + h12(95) + h12(96) + h12(97) + h12(98) + h12(99) + h12(100) + h12(101) + h12(102) + h12(103) + h12(104) + h12(105) + h12(106) + h12(107) + h12(108) + h12(109) + h12(110) + h12( 111) + h12(112) + h12(113) + h12(114) + h12(115) + h12(116) + h12(117) + h12(118) + h12(119) + h12(120) + h12(121) + h12(122) + h12(123) + h12(124) + h12(125) + h12(126) + h12(127) + h12(128) + h12(129) + h12(130) + h12(131) + h12(132) + h12(133) + h12(134) + h12(135) + h12(136) + h12(137) + h12(138) + h12(139) + h12(140) + h12(141) + h12(142) + h12(143) + h12(144) + h12(145) + h12(146) + h12(147) + h12(148) + h12(149) <= 72930 variable bounds: 180 <= h12(1) <= 1860 180 <= h12(2) <= 1860 180 <= h12(3) <= 1860 180 <= h12(4) <= 1860 180 <= h12(5) <= 1860 180 <= h12(6) <= 1860 180 <= h12(7) <= 1860 180 <= h12(8) <= 1860 180 <= h12(9) <= 1860 180 <= h12(10) <= 1860 180 <= h12(11) <= 1860 180 <= h12(12) <= 1860 180 <= h12(13) <= 1860 180 <= h12(14) <= 1860 180 <= h12(15) <= 1860 180 <= h12(16) <= 1860 180 <= h12(17) <= 1860 180 <= h12(18) <= 1860 180 <= h12(19) <= 1860 180 <= h12(20) <= 1860 180 <= h12(21) <= 1860 180 <= h12(22) <= 1860 180 <= h12(23) <= 1860 180 <= h12(24) <= 1860 180 <= h12(25) <= 1860 180 <= h12(26) <= 1860 180 <= h12(27) <= 1860 180 <= h12(28) <= 1860 180 <= h12(29) <= 1860 180 <= h12(30) <= 1860 180 <= h12(31) <= 1860 180 <= h12(32) <= 1860 107 180 <= h12(33) <= 1860 180 <= h12(34) <= 1860 180 <= h12(35) <= 1860 180 <= h12(36) <= 1860 180 <= h12(37) <= 1860 180 <= h12(38) <= 1860 180 <= h12(39) <= 1860 180 <= h12(40) <= 1860 180 <= h12(41) <= 1860 180 <= h12(42) <= 1860 180 <= h12(43) <= 1860 180 <= h12(44) <= 1860 180 <= h12(45) <= 1860 180 <= h12(46) <= 1860 180 <= h12(47) <= 1860 180 <= h12(48) <= 1860 180 <= h12(49) <= 1860 180 <= h12(50) <= 1860 180 <= h12(51) <= 1860 180 <= h12(52) <= 1860 180 <= h12(53) <= 1860 180 <= h12(54) <= 1860 180 <= h12(55) <= 1860 180 <= h12(56) <= 1860 180 <= h12(57) <= 1860 180 <= h12(58) <= 1860 180 <= h12(59) <= 1860 180 <= h12(60) <= 1860 180 <= h12(61) <= 1860 180 <= h12(62) <= 1860 180 <= h12(63) <= 1860 180 <= h12(64) <= 1860 180 <= h12(65) <= 1860 180 <= h12(66) <= 1860 180 <= h12(67) <= 1860 180 <= h12(68) <= 1860 180 <= h12(69) <= 1860 180 <= h12(70) <= 1860 180 <= h12(71) <= 1860 180 <= h12(72) <= 1860 180 <= h12(73) <= 1860 180 <= h12(74) <= 1860 180 <= h12(75) <= 1860 180 <= h12(76) <= 1860 180 <= h12(77) <= 1860 180 <= h12(78) <= 1860 180 <= h12(79) <= 1860 180 <= h12(80) <= 1860 180 <= h12(81) <= 1860 180 <= h12(82) <= 1860 180 <= h12(83) <= 1860 180 <= h12(84) <= 1860 180 <= h12(85) <= 1860 180 <= h12(86) <= 1860 180 <= h12(87) <= 1860 180 <= h12(88) <= 1860 180 <= h12(89) <= 1860 180 <= h12(90) <= 1860 180 <= h12(91) <= 1860 108 180 <= h12(92) <= 1860 180 <= h12(93) <= 1860 180 <= h12(94) <= 1860 180 <= h12(95) <= 1860 180 <= h12(96) <= 1860 180 <= h12(97) <= 1860 180 <= h12(98) <= 1860 180 <= h12(99) <= 1860 180 <= h12(100) <= 1860 180 <= h12(101) <= 1860 180 <= h12(102) <= 1860 180 <= h12(103) <= 1860 180 <= h12(104) <= 1860 180 <= h12(105) <= 1860 180 <= h12(106) <= 1860 180 <= h12(107) <= 1860 180 <= h12(108) <= 1860 180 <= h12(109) <= 1860 180 <= h12(110) <= 1860 180 <= h12(111) <= 1860 180 <= h12(112) <= 1860 180 <= h12(113) <= 1860 180 <= h12(114) <= 1860 180 <= h12(115) <= 1860 180 <= h12(116) <= 1860 180 <= h12(117) <= 1860 180 <= h12(118) <= 1860 180 <= h12(119) <= 1860 180 <= h12(120) <= 1860 180 <= h12(121) <= 1860 180 <= h12(122) <= 1860 180 <= h12(123) <= 1860 180 <= h12(124) <= 1860 180 <= h12(125) <= 1860 180 <= h12(126) <= 1860 180 <= h12(127) <= 1860 180 <= h12(128) <= 1860 180 <= h12(129) <= 1860 180 <= h12(130) <= 1860 180 <= h12(131) <= 1860 180 <= h12(132) <= 1860 180 <= h12(133) <= 1860 180 <= h12(134) <= 1860 180 <= h12(135) <= 1860 180 <= h12(136) <= 1860 180 <= h12(137) <= 1860 180 <= h12(138) <= 1860 180 <= h12(139) <= 1860 180 <= h12(140) <= 1860 180 <= h12(141) <= 1860 180 <= h12(142) <= 1860 180 <= h12(143) <= 1860 180 <= h12(144) <= 1860 180 <= h12(145) <= 1860 180 <= h12(146) <= 1860 180 <= h12(147) <= 1860 180 <= h12(148) <= 1860 180 <= h12(149) <= 1860 Solving problem using ga. 109 Single objective optimization: 149 Variable(s) 149 Integer variable(s) 2 Linear inequality constraint(s) Options: CreationFcn: @gacreationuniformint CrossoverFcn: @crossoverlaplace SelectionFcn: @selectiontournament MutationFcn: @mutationpower Elapsed time is 119453.539623 seconds. Optimization terminated: average change in the pena lty fitness value less than options.FunctionTolerance and constraint violation is less than options.ConstraintTolerance. solution = struct with fields: h12: [149×1 double] reasonSolverStopped = SolverConvergedSuccessfully objectiveValue = 6.8974e+04 110 D4. Data Optimasi Skema 4 Elapsed time is 4.577972 seconds. OptimizationProblem : Solve for: h21 where: h21 integer minimize : arg1 where: arg1 = model(h21); subject to constraint1: h21(1) + h21(2) + h21(3) + h21(4) + h21(5) + h21(6) + h21(7) + h21(8) + h21(9) + h21(10) + h21(11) + h21(12) + h21(13) + h21(14) + h21(15) + h21(16) + h21(17) + h21(18) + h21(19) + h21(20) + h21(21) + h21(22) + h21(23) + h21(24) + h21(25) + h21(26) + h21(27) + h21(28) + h21(29) + h21(30) + h21(31) + h21(32) + h21(33) + h21(34) + h21(35) + h21(36) + h21(37) + h21(3 8) + h21(39) + h21(40) + h21(41) + h21(42) + h21(43) + h21(44) + h21(45) + h21(46) + h21(47) + h21(48) + h21(49) + h21(50) + h21(51) + h21(52) + h21(53) + h21(54) + h21(55) + h21(56) + h21(57) + h21(58) + h21(59) + h21(60) + h21(61) + h21(62) + h21(63) + h21(64) + h21(65) + h21(66) + h21(67) + h21(68) + h21(69) + h21(70) + h21(71) + h21(72) + h21(73 ) + h21(74) + h21(75) + h21(76) + h21(77) + h21(78) + h21(79) + h21(80) + h21(81) + h21(82) + h21(83) + h21(84) + h21(85) + h21(86) + h21(87) + h21(88) + h21(89) + h21(90) + h21(91) + h21(92) + h21(93) + h21(94) + h21(95) + h21(96) + h21(97) + h21(98) + h21(99) + h21(100) + h21(101) + h21(102) + h21(103) + h21(104) + h21(105) + h21(106) + h21(107) + h21(108) + h21(109) + h21(110) + h21(111) + h21(112) + h21(113) + h21(114) + h21(115) + h21(116) + h21(117) + h21(118) + h21(119) + h21(120) + h21(121) + h21(12 2) + h21(123) + h21(124) + h21(125) + h21(126) + h21(127) + h21(128) + h21(129) + h21(130) + h21(131) + h21(132) + h21(133) + h21(134) + h21(135) + h21(136) + h2 1(137) + h21(138) + h21(139) + h21(140) + h21(141) + h21(142) + h21(143) + h21(144) + h21(145) + h21(146) + h21(147) + h21(148) + h21(149) >= 72870 subject to constraint2: h21(1) + h21(2) + h21(3) + h21(4) + h21(5) + h21(6) + h21(7) + h21(8) + h21(9) + h21(10) + h21(11) + h21(12) + h21(13) + h21(14) + h21(15) + h21(16) + h21(17) + h21(18) + h2 1(19) + h21(20) + h21(21) + h21(22) + h21(23) + h21(24) + h21(25) + h21(26) + h21(27) + h21(28) + h21(29) + h21(30) + h21(31) + h21(32) + h21(33) + h21(34) + h21 (35) + h21(36) + h21(37) + h21(38) + h21(39) + h21(40) + h21(41) + h21(42) + h21(43) + h21(44) + h21(45) + h21(46) + h21(47) + h21(48) + h21(49) + h21(50) + h21(51) + h21(52) + h21(53) + h21(54) + h21(55) + h21(56) + h21(57) + h21(58) + h21(59) + h21(60) + h21(61) + h21(62) + h21(63) + h21(64) + h21(65) + h21(66) + h21(67) + h21(68) + h21(69) + h21(70) + h21(71) + h21(72) + h21(73) + h21(74) + h21(75) + h21(76) + h21(77) + h21(78) + h21(79) + h21(80) + h21(81) + h21(82) + h21(83) + h21(84) + h21(85) + h21(8 6) + 111 h21(87) + h21(88) + h21(89) + h21(90) + h21(91) + h21(92) + h21(93) + h21(94) + h21(95) + h21(96) + h21(97) + h21(98) + h21(99) + h21(100) + h21(101) + h21(102) + h21(103) + h21(104) + h21(105) + h21(106) + h21(107) + h21(108) + h21(109) + h21(110) + h21(111) + h21(112) + h21(113) + h21(114) + h21(115) + h21(116) + h21(117) + h21(118) + h21(119 ) + h21(120) + h21(121) + h21(122) + h21(123) + h21(124) + h21(125) + h21(126) + h21(127) + h21(128) + h21(129) + h21(130) + h21(131) + h21(132) + h21(133) + h21 (134) + h21(135) + h21(136) + h21(137) + h21(138) + h21(139) + h21(140) + h21(141) + h21(142) + h21(143) + h21(144) + h21(145) + h21(146) + h21(147) + h21(148) + h21(149) <= 72930 variable bounds: 300 <= h21(1) <= 1560 300 <= h21(2) <= 1560 300 <= h21(3) <= 1560 300 <= h21(4) <= 1560 300 <= h21(5) <= 1560 300 <= h21(6) <= 1560 300 <= h21(7) <= 1560 300 <= h21(8) <= 1560 300 <= h21(9) <= 1560 300 <= h21(10) <= 1560 300 <= h21(11) <= 1560 300 <= h21(12) <= 1560 300 <= h21(13) <= 1560 300 <= h21(14) <= 1560 300 <= h21(15) <= 1560 300 <= h21(16) <= 1560 300 <= h21(17) <= 1560 300 <= h21(18) <= 1560 300 <= h21(19) <= 1560 300 <= h21(20) <= 1560 300 <= h21(21) <= 1560 300 <= h21(22) <= 1560 300 <= h21(23) <= 1560 300 <= h21(24) <= 1560 300 <= h21(25) <= 1560 300 <= h21(26) <= 1560 300 <= h21(27) <= 1560 300 <= h21(28) <= 1560 300 <= h21(29) <= 1560 300 <= h21(30) <= 1560 300 <= h21(31) <= 1560 300 <= h21(32) <= 1560 300 <= h21(33) <= 1560 300 <= h21(34) <= 1560 300 <= h21(35) <= 1560 300 <= h21(36) <= 1560 300 <= h21(37) <= 1560 300 <= h21(38) <= 1560 300 <= h21(39) <= 1560 300 <= h21(40) <= 1560 300 <= h21(41) <= 1560 300 <= h21(42) <= 1560 300 <= h21(43) <= 1560 300 <= h21(44) <= 1560 300 <= h21(45) <= 1560 300 <= h21(46) <= 1560 112 300 <= h21(47) <= 1560 300 <= h21(48) <= 1560 300 <= h21(49) <= 1560 300 <= h21(50) <= 1560 300 <= h21(51) <= 1560 300 <= h21(52) <= 1560 300 <= h21(53) <= 1560 300 <= h21(54) <= 1560 300 <= h21(55) <= 1560 300 <= h21(56) <= 1560 300 <= h21(57) <= 1560 300 <= h21(58) <= 1560 300 <= h21(59) <= 1560 300 <= h21(60) <= 1560 300 <= h21(61) <= 1560 300 <= h21(62) <= 1560 300 <= h21(63) <= 1560 300 <= h21(64) <= 1560 300 <= h21(65) <= 1560 300 <= h21(66) <= 1560 300 <= h21(67) <= 1560 300 <= h21(68) <= 1560 300 <= h21(69) <= 1560 300 <= h21(70) <= 1560 300 <= h21(71) <= 1560 300 <= h21(72) <= 1560 300 <= h21(73) <= 1560 300 <= h21(74) <= 1560 300 <= h21(75) <= 1560 300 <= h21(76) <= 1560 300 <= h21(77) <= 1560 300 <= h21(78) <= 1560 300 <= h21(79) <= 1560 300 <= h21(80) <= 1560 300 <= h21(81) <= 1560 300 <= h21(82) <= 1560 300 <= h21(83) <= 1560 300 <= h21(84) <= 1560 300 <= h21(85) <= 1560 300 <= h21(86) <= 1560 300 <= h21(87) <= 1560 300 <= h21(88) <= 1560 300 <= h21(89) <= 1560 300 <= h21(90) <= 1560 300 <= h21(91) <= 1560 300 <= h21(92) <= 1560 300 <= h21(93) <= 1560 300 <= h21(94) <= 1560 300 <= h21(95) <= 1560 300 <= h21(96) <= 1560 300 <= h21(97) <= 1560 300 <= h21(98) <= 1560 300 <= h21(99) <= 1560 300 <= h21(100) <= 1560 300 <= h21(101) <= 1560 300 <= h21(102) <= 1560 300 <= h21(103) <= 1560 300 <= h21(104) <= 1560 300 <= h21(105) <= 1560 113 300 <= h21(106) <= 1560 300 <= h21(107) <= 1560 300 <= h21(108) <= 1560 300 <= h21(109) <= 1560 300 <= h21(110) <= 1560 300 <= h21(111) <= 1560 300 <= h21(112) <= 1560 300 <= h21(113) <= 1560 300 <= h21(114) <= 1560 300 <= h21(115) <= 1560 300 <= h21(116) <= 1560 300 <= h21(117) <= 1560 300 <= h21(118) <= 1560 300 <= h21(119) <= 1560 300 <= h21(120) <= 1560 300 <= h21(121) <= 1560 300 <= h21(122) <= 1560 300 <= h21(123) <= 1560 300 <= h21(124) <= 1560 300 <= h21(125) <= 1560 300 <= h21(126) <= 1560 300 <= h21(127) <= 1560 300 <= h21(128) <= 1560 300 <= h21(129) <= 1560 300 <= h21(130) <= 1560 300 <= h21(131) <= 1560 300 <= h21(132) <= 1560 300 <= h21(133) <= 1560 300 <= h21(134) <= 1560 300 <= h21(135) <= 1560 300 <= h21(136) <= 1560 300 <= h21(137) <= 1560 300 <= h21(138) <= 1560 300 <= h21(139) <= 1560 300 <= h21(140) <= 1560 300 <= h21(141) <= 1560 300 <= h21(142) <= 1560 300 <= h21(143) <= 1560 300 <= h21(144) <= 1560 300 <= h21(145) <= 1560 300 <= h21(146) <= 1560 300 <= h21(147) <= 1560 300 <= h21(148) <= 1560 300 <= h21(149) <= 1560 Solving problem using ga. Single objective optimization: 149 Variables 149 Integer variables 2 Linear inequality constraints Options: CreationFcn: @gacreationuniformint CrossoverFcn: @crossoverlaplace SelectionFcn: @selectiontournament MutationFcn: @mutationpower 114 solution = struct with fields: h21: [149×1 double] reasonSolverStopped = SolverConvergedSuccessfully objectiveValue = 6.9524e+04 115 D5. Data Optimasi Skema 5 Elapsed time is 10.274656 seconds. OptimizationProblem : Solve for: h12, h21 where: h12, h21 integer minimize : model(h12, h21) subject to constraint1: h12(1) + h12(2) + h12(3) + h12(4) + h12(5) + h12(6) + h12(7) + h12(8) + h12(9) + h12(10) + h12(11) + h12(12) + h12(13) + h12(14) + h12(15) + h12(16) + h12(17) + h12(18) + h12(19) + h12(20) + h12(21) + h12(22) + h12(23) + h12(24) + h12(25) + h12(26) + h12(27) + h12(28) + h12(29) + h12(3 0) + h12(31) + h12(32) + h12(33) + h12(34) + h12(35) + h12(36) + h12(37) + h12(38) + h12(39) + h12(40) + h12(41) + h12(42) + h12(43) + h12(44) + h12(45) + h12(46) + h12(47) + h12(48) + h12(49) + h12(50) + h12(51) + h12(52) + h12(53) + h12(54) + h12(5 5) + h12(56) + h12(57) + h12(58) + h12(59) + h12(60) + h12(61) + h12(62) + h12(63) + h12(64) + h12(65) + h12(66) + h12(67) + h12(68) + h12(69) + h12(70) + h12(71) + h12(72) + h12(73) + h12(74) + h12(75) + h12(76) + h12(77) + h12(78) + h12(79) + h12(80) + h12(81) + h12(82) + h12(83) + h12(84) + h12(85) + h12(86) + h12(87) + h12(88) + h12(89) + h12(90) + h12(91) + h12(92) + h12(93) + h12(94) + h12(95) + h12(96) + h12(97) + h12(98) + h12(99) + h12(100) + h12(101) + h12(102) + h12(103) + h12(104) + h12(105) + h12(106) + h12(107) + h12(108) + h12(109) + h12(110) + h12(111) + h12(112) + h12(113) + h12(11 4) + h12(115) + h12(116) + h12(117) + h12(118) + h12(119) + h12(120) + h12(121) + h12(122) + h12(123) + h12(124) + h12(125) + h12(126) + h12(127) + h12(128) + h12(129) + h12(130) + h12(131) + h12(132) + h12(133) + h12(134) + h12(135) + h12(136) + h12(137) + h12(138) + h12(139) + h12(140) + h12(141) + h12(142) + h12(143) + h12(144) + h12(145) + h12(146) + h12(147) + h12(148) + h12(149) >= 72870 subject to constraint2: h12(1) + h12(2) + h12(3) + h12(4) + h12(5) + h12(6) + h12(7) + h12(8) + h12(9) + h12(10) + h12(11) + h12(12) + h12(13) + h12(14) + h12(15) + h12(16) + h12(17) + h12(18) + h12(19) + h12(20) + h12(21) + h12(22) + h12(23) + h12(24) + h12(25) + h12(26) + h12(27) + h12(28) + h12(29) + h12(30) + h12(31) + h12(32) + h12(33) + h12(34) + h12(35) + h12(36) + h12(37) + h12(38) + h12(39) 116 + h12(40) + h12(41) + h12(42) + h12(43) + h12(44) + h12(45) + h12(46) + h12(47) + h12(48) + h12(49) + h12(50) + h12(51) + h12(52) + h12(53) + h12(54) + h12(55) + h12(56) + h12(57) + h12(58 ) + h12(59) + h12(60) + h12(61) + h12(62) + h12(63) + h12(64) + h12(65) + h12(66) + h12(67) + h12(68) + h12(69) + h12(70) + h12(71) + h12(72) + h12(73) + h12(74) + h12(75) + h12(76) + h12(77) + h12(78) + h12(79) + h12(80) + h12(81) + h12(82) + h12(83 ) + h12(84) + h12(85) + h12(86) + h12(87) + h12(88) + h12(89) + h12(90) + h12(91) + h12(92) + h12(93) + h12(94) + h12(95) + h12(96) + h12(97) + h12(98) + h12(99) + h12(100) + h12(101) + h12(102) + h12(103) + h12(104) + h12(105) + h12(106) + h12(107) + h12(108) + h12(109) + h12(110) + h12(111) + h12(112) + h12(113) + h12(114) + h12(115) + h12(116) + h12(117) + h12(118) + h12(119) + h12(120) + h12(121) + h12(122) + h12(123) + h12(124) + h12(125) + h12(126) + h12(127) + h12(128) + h12(129) + h12(130) + h12(131) + h12(132) + h12(133) + h12(134) + h12(135) + h12(136) + h12(137) + h12(138) + h12(139) + h12(140) + h12(141) + h12(142) + h12(143) + h12(144) + h12(145) + h12(146) + h12(147) + h12(148) + h12(149) <= 7293 0 subject to constraint3: h21(1) + h21(2) + h21(3) + h21(4) + h21(5) + h21(6) + h21(7) + h21(8) + h21(9) + h21(10) + h21(11) + h21(12) + h21(13) + h21(14) + h21(15) + h21(16) + h21(17) + h21(18) + h21(19) + h21(20) + h21(21) + h21(22) + h21(23) + h21(24) + h21(25) + h21(26) + h21(27) + h21(28) + h21 (29) + h21(30) + h21(31) + h21(32) + h21(33) + h21(34) + h21(35) + h21(36) + h21(37) + h21(38) + h21(39) + h21(40) + h21(41) + h21(42) + h21(43) + h21(44) + h21(45) + h21(46) + h21(47) + h21(48) + h21(49) + h21(50) + h21(51) + h21(52) + h21(53) + h21(54) + h21(55) + h21(56) + h21(57) + h21(58) + h21(59) + h21(60) + h21(61) + h21(62) + h21(63) + h21(64) + h21(65) + h21(66) + h21(67) + h21(68) + h21(69) + h21(70) + h21(71) + h21(72) + h21(73) + h21(74) + h21(75) + h21(76) + h 21(77) + h21(78) + h21(79) + h21(80) + h21(81) + h21(82) + h21(83) + h21(84) + h21(85) + h21(86) + h21(87) + h21(88) + h21(89) + h21(90) + h21(91) + h21(92) + h21(93) + h21(94) + h21(95) + h21(96) + h21(97) + h21(98) + h21(99) + h21(100) + h21(101) + h21(102) + h21(103) + h21(104) + h21(105) + h21(106) + h21(107) + h21(108) + h21(109) + h21(110) + h21(111) + h21(112) + h21(113) + h21(114) + h21(115) + h21(116) + h21(117) + h21(118) + h21(119) + h21(120) + h21(121) + h21(122) + h21(123) + h21( 124) + h21(125) + h21(126 ) + h21(127) + h21(128) + h21(129) + h21(130) + h21(131) + h21(132) + h21(133) + h21(134) + h21(135) + h21(136) + h21(137) + h21(138) + h21(139) 117 + h21(140) + h21(141) + h21(142) + h21(143) + h21(144) + h21(145) + h21(146) + h21(147) + h21(148) + h21(149) >= 72870 subject to constraint4: h21(1) + h21(2) + h21(3) + h21(4) + h21(5) + h21(6) + h21(7) + h21(8) + h21(9) + h21(10) + h21(11) + h21(12) + h21(13) + h21(14) + h21(15) + h21(16) + h21(17) + h21(18) + h21(19) + h21(20) + h21(21) + h2 1(22) + h21(23) + h21(24) + h21(25) + h21(26) + h21(27) + h21(28) + h21(29) + h21(30) + h21(31) + h21(32) + h21(33) + h21(34) + h21(35) + h21(36) + h21(37) + h21(38) + h21(39) + h21(40) + h21(41) + h21(42) + h21(43) + h21(44) + h21(45) + h21(46) + h21(47) + h21(48) + h21(49) + h21(50) + h21(51) + h21(52) + h21(53) + h21(54) + h21(55) + h21(56) + h21(57) + h21(58) + h21(59) + h21(60) + h21(61) + h21(62) + h21(63) + h21(64) + h21(65) + h21(66) + h21(67) + h21(68) + h21(69) + h21(70) + h21(71) + h21(72) + h21(73) + h21(74) + h21(75) + h21(76) + h21(77) + h21(78) + h21(79) + h21(80) + h21(81) + h21(82) + h21(83) + h21(84) + h21(85) + h21(86) + h21(87) + h21(88) + h21(89) + h21(90) + h21(91) + h21(92) + h21(93) + h21(94) + h21(95) + h21(96) + h2 1(97) + h21(98) + h21(99) + h21(100) + h21(101) + h21(102) + h21(103) + h21(104) + h21(105) + h21(106) + h21(107) + h21(108) + h21(109) + h21(110) + h21(111) + h21(112) + h21(113) + h21(114) + h21(115) + h21(116) + h21(117 ) + h21(118) + h21(119) + h21(120) + h21(121) + h21(122) + h21(123) + h21(124) + h21(125) + h21(126) + h21(127) + h21(128) + h21(129) + h21(130) + h21(131) + h21(132) + h21(133) + h21(134) + h21(135) + h21(136) + h21(137) + h21(138) + h21(139) + h21(140) + h21(141) + h 21(142) + h21(143) + h21(144) + h21(145) + h21(146) + h21(147) + h21(148) + h21(149) <= 7293 0 variable bounds: 180 <= h12(1) <= 1860 180 <= h12(2) <= 1860 180 <= h12(3) <= 1860 180 <= h12(4) <= 1860 180 <= h12(5) <= 1860 180 <= h12(6) <= 1860 180 <= h12(7) <= 1860 180 <= h12(8) <= 1860 180 <= h12(9) <= 1860 180 <= h12(10) <= 1860 180 <= h12(11) <= 1860 180 <= h12(12) <= 1860 180 <= h12(13) <= 1860 180 <= h12(14) <= 1860 180 <= h12(15) <= 1860 180 <= h12(16) <= 1860 180 <= h12(17) <= 1860 180 <= h12(18) <= 1860 180 <= h12(19) <= 1860 180 <= h12(20) <= 1860 118 180 <= h12(21) <= 1860 180 <= h12(22) <= 1860 180 <= h12(23) <= 1860 180 <= h12(24) <= 1860 180 <= h12(25) <= 1860 180 <= h12(26) <= 1860 180 <= h12(27) <= 1860 180 <= h12(28) <= 1860 180 <= h12(29) <= 1860 180 <= h12(30) <= 1860 180 <= h12(31) <= 1860 180 <= h12(32) <= 1860 180 <= h12(33) <= 1860 180 <= h12(34) <= 1860 180 <= h12(35) <= 1860 180 <= h12(36) <= 1860 180 <= h12(37) <= 1860 180 <= h12(38) <= 1860 180 <= h12(39) <= 1860 180 <= h12(40) <= 1860 180 <= h12(41) <= 1860 180 <= h12(42) <= 1860 180 <= h12(43) <= 1860 180 <= h12(44) <= 1860 180 <= h12(45) <= 1860 180 <= h12(46) <= 1860 180 <= h12(47) <= 1860 180 <= h12(48) <= 1860 180 <= h12(49) <= 1860 180 <= h12(50) <= 1860 180 <= h12(51) <= 1860 180 <= h12(52) <= 1860 180 <= h12(53) <= 1860 180 <= h12(54) <= 1860 180 <= h12(55) <= 1860 180 <= h12(56) <= 1860 180 <= h12(57) <= 1860 180 <= h12(58) <= 1860 180 <= h12(59) <= 1860 180 <= h12(60) <= 1860 180 <= h12(61) <= 1860 180 <= h12(62) <= 1860 180 <= h12(63) <= 1860 180 <= h12(64) <= 1860 180 <= h12(65) <= 1860 180 <= h12(66) <= 1860 180 <= h12(67) <= 1860 180 <= h12(68) <= 1860 180 <= h12(69) <= 1860 180 <= h12(70) <= 1860 180 <= h12(71) <= 1860 180 <= h12(72) <= 1860 180 <= h12(73) <= 1860 180 <= h12(74) <= 1860 180 <= h12(75) <= 1860 180 <= h12(76) <= 1860 180 <= h12(77) <= 1860 180 <= h12(78) <= 1860 180 <= h12(79) <= 1860 119 180 <= h12(80) <= 1860 180 <= h12(81) <= 1860 180 <= h12(82) <= 1860 180 <= h12(83) <= 1860 180 <= h12(84) <= 1860 180 <= h12(85) <= 1860 180 <= h12(86) <= 1860 180 <= h12(87) <= 1860 180 <= h12(88) <= 1860 180 <= h12(89) <= 1860 180 <= h12(90) <= 1860 180 <= h12(91) <= 1860 180 <= h12(92) <= 1860 180 <= h12(93) <= 1860 180 <= h12(94) <= 1860 180 <= h12(95) <= 1860 180 <= h12(96) <= 1860 180 <= h12(97) <= 1860 180 <= h12(98) <= 1860 180 <= h12(99) <= 1860 180 <= h12(100) <= 1860 180 <= h12(101) <= 1860 180 <= h12(102) <= 1860 180 <= h12(103) <= 1860 180 <= h12(104) <= 1860 180 <= h12(105) <= 1860 180 <= h12(106) <= 1860 180 <= h12(107) <= 1860 180 <= h12(108) <= 1860 180 <= h12(109) <= 1860 180 <= h12(110) <= 1860 180 <= h12(111) <= 1860 180 <= h12(112) <= 1860 180 <= h12(113) <= 1860 180 <= h12(114) <= 1860 180 <= h12(115) <= 1860 180 <= h12(116) <= 1860 180 <= h12(117) <= 1860 180 <= h12(118) <= 1860 180 <= h12(119) <= 1860 180 <= h12(120) <= 1860 180 <= h12(121) <= 1860 180 <= h12(122) <= 1860 180 <= h12(123) <= 1860 180 <= h12(124) <= 1860 180 <= h12(125) <= 1860 180 <= h12(126) <= 1860 180 <= h12(127) <= 1860 180 <= h12(128) <= 1860 180 <= h12(129) <= 1860 180 <= h12(130) <= 1860 180 <= h12(131) <= 1860 180 <= h12(132) <= 1860 180 <= h12(133) <= 1860 180 <= h12(134) <= 1860 180 <= h12(135) <= 1860 180 <= h12(136) <= 1860 180 <= h12(137) <= 1860 180 <= h12(138) <= 1860 120 180 <= h12(139) <= 1860 180 <= h12(140) <= 1860 180 <= h12(141) <= 1860 180 <= h12(142) <= 1860 180 <= h12(143) <= 1860 180 <= h12(144) <= 1860 180 <= h12(145) <= 1860 180 <= h12(146) <= 1860 180 <= h12(147) <= 1860 180 <= h12(148) <= 1860 180 <= h12(149) <= 1860 180 <= h21(1) <= 1860 180 <= h21(2) <= 1860 180 <= h21(3) <= 1860 180 <= h21(4) <= 1860 180 <= h21(5) <= 1860 180 <= h21(6) <= 1860 180 <= h21(7) <= 1860 180 <= h21(8) <= 1860 180 <= h21(9) <= 1860 180 <= h21(10) <= 1860 180 <= h21(11) <= 1860 180 <= h21(12) <= 1860 180 <= h21(13) <= 1860 180 <= h21(14) <= 1860 180 <= h21(15) <= 1860 180 <= h21(16) <= 1860 180 <= h21(17) <= 1860 180 <= h21(18) <= 1860 180 <= h21(19) <= 1860 180 <= h21(20) <= 1860 180 <= h21(21) <= 1860 180 <= h21(22) <= 1860 180 <= h21(23) <= 1860 180 <= h21(24) <= 1860 180 <= h21(25) <= 1860 180 <= h21(26) <= 1860 180 <= h21(27) <= 1860 180 <= h21(28) <= 1860 180 <= h21(29) <= 1860 180 <= h21(30) <= 1860 180 <= h21(31) <= 1860 180 <= h21(32) <= 1860 180 <= h21(33) <= 1860 180 <= h21(34) <= 1860 180 <= h21(35) <= 1860 180 <= h21(36) <= 1860 180 <= h21(37) <= 1860 180 <= h21(38) <= 1860 180 <= h21(39) <= 1860 180 <= h21(40) <= 1860 180 <= h21(41) <= 1860 180 <= h21(42) <= 1860 180 <= h21(43) <= 1860 180 <= h21(44) <= 1860 180 <= h21(45) <= 1860 180 <= h21(46) <= 1860 180 <= h21(47) <= 1860 121 180 <= h21(48) <= 1860 180 <= h21(49) <= 1860 180 <= h21(50) <= 1860 180 <= h21(51) <= 1860 180 <= h21(52) <= 1860 180 <= h21(53) <= 1860 180 <= h21(54) <= 1860 180 <= h21(55) <= 1860 180 <= h21(56) <= 1860 180 <= h21(57) <= 1860 180 <= h21(58) <= 1860 180 <= h21(59) <= 1860 180 <= h21(60) <= 1860 180 <= h21(61) <= 1860 180 <= h21(62) <= 1860 180 <= h21(63) <= 1860 180 <= h21(64) <= 1860 180 <= h21(65) <= 1860 180 <= h21(66) <= 1860 180 <= h21(67) <= 1860 180 <= h21(68) <= 1860 180 <= h21(69) <= 1860 180 <= h21(70) <= 1860 180 <= h21(71) <= 1860 180 <= h21(72) <= 1860 180 <= h21(73) <= 1860 180 <= h21(74) <= 1860 180 <= h21(75) <= 1860 180 <= h21(76) <= 1860 180 <= h21(77) <= 1860 180 <= h21(78) <= 1860 180 <= h21(79) <= 1860 180 <= h21(80) <= 1860 180 <= h21(81) <= 1860 180 <= h21(82) <= 1860 180 <= h21(83) <= 1860 180 <= h21(84) <= 1860 180 <= h21(85) <= 1860 180 <= h21(86) <= 1860 180 <= h21(87) <= 1860 180 <= h21(88) <= 1860 180 <= h21(89) <= 1860 180 <= h21(90) <= 1860 180 <= h21(91) <= 1860 180 <= h21(92) <= 1860 180 <= h21(93) <= 1860 180 <= h21(94) <= 1860 180 <= h21(95) <= 1860 180 <= h21(96) <= 1860 180 <= h21(97) <= 1860 180 <= h21(98) <= 1860 180 <= h21(99) <= 1860 180 <= h21(100) <= 1860 180 <= h21(101) <= 1 860 180 <= h21(102) <= 1860 180 <= h21(103) <= 1860 180 <= h21(104) <= 18 60 180 <= h21(105) <= 1860 180 <= h21(106) <= 1860 122 180 <= h21(107) <= 1860 180 <= h21(108) <= 1860 180 <= h21(109) <= 1860 180 <= h21(110) <= 1860 180 <= h21(111) <= 1860 180 <= h21(112) <= 1860 180 <= h21(113) <= 1860 180 <= h21(114) <= 1860 180 <= h21(115) <= 1860 180 <= h21(116) <= 1860 180 <= h21(117) <= 1860 180 <= h21(118) <= 1860 180 <= h21(119) <= 1860 180 <= h21(120) <= 1860 180 <= h21(121) <= 1860 180 <= h21(122) <= 1860 180 <= h21(123) <= 1860 180 <= h21(124) <= 1860 180 <= h21(125) <= 1860 180 <= h21(126) <= 1860 180 <= h21(127) <= 1860 180 <= h21(128) <= 1860 180 <= h21(129) <= 1860 180 <= h21(130) <= 1860 180 <= h21(131) <= 1860 180 <= h21(132) <= 1860 180 <= h21(133) <= 1860 180 <= h21(134) <= 1860 180 <= h21(135) <= 1860 180 <= h21(136) <= 1860 180 <= h21(137) <= 1860 180 <= h21(138) <= 1860 180 <= h21(139) <= 1860 180 <= h21(140) <= 1860 180 <= h21(141) <= 1860 180 <= h21(142) <= 1860 180 <= h21(143) <= 1860 180 <= h21(144) <= 1860 180 <= h21(145) <= 1860 180 <= h21(146) <= 1860 180 <= h21(147) <= 1860 180 <= h21(148) <= 1860 180 <= h21(149) <= 1860 Solving problem using ga. Single objective optimization: 298 Variable(s) 298 Integer variable(s) 4 Linear inequality constraint(s) Options: CreationFcn: @gacreationuniformint CrossoverFcn: @crossoverlaplace SelectionFcn: @selectiontournament MutationFcn: @mutationpower 123 Elapsed time is 77936.551224 seconds. Optimization terminated: average change in the penalty fitness value less than options.FunctionTolerance and constraint violation is less than options.ConstraintTolerance. solution = struct with fields: h12: [149×1 double] h21: [149×1 double] reasonSolverStopped = SolverConvergedSuccessfully objectiveValue = 6.4630e+04 124 D6. Data Optimasi Skema 6 Elapsed time is 6.7773 81 seconds. OptimizationProblem : Solve for: D12, D21, h12, h21 where: D12, D21, h12, h21 integer minimize : model(D12, D21, h12, h21) subject to constraint1: h12(1) + h12(2) + h12(3) + h12(4) + h12(5) + h12(6) + h12(7) + h12(8) + h12(9) + h12(10) + h12(11) + h12(12) + h12(13) + h12(14) + h12(15) + h12(16) + h12(17) + h12(18) + h12(19) + h12(20) + h12(21) + h12(22) + h12(23) + h12(24) + h12(25) + h12(26) + h12(27) + h12(28) + h12(29) + h12(30) + h12(31) + h12(32) + h12(33) + h12(34) + h12(35) + h12(36) + h12(37) + h12(38) + h12(39) + h12(40) + h12(41) + h12(42) + h12(43) + h12(44) + h12(45) + h12(46) + h12(47) + h12(48) + h12(49) + h12(50) + h12(51) + h12(52) + h12(53) + h12(54) + h12(55) + h12(56) + h12(57) + h12(58) + h12(59) + h12(60) + h12(61) + h12(62) + h12(63) + h12(64) + h12(65) + h12(66) + h12(67) + h12(68) + h12(69) + h12(70) + h12(71) + h12(72) + h12(73) + h12(74) + h12(75) + h12(76) + h12(77) + h12(78) + h12(79) + h12(80) + h12(81) + h12(82) + h12(83) + h12(84) + h12(85) + h12(86) + h12(87) + h12(88) + h12(89) + h12(90) + h12(91) + h12(92) + h12(93) + h12(94) + h12(95) + h12(96) + h12(97) + h12(98) + h12(99) + h12(100) + h12(101) + h12(102) + h12(103) + h12(104) + h12(105) + h12(106) + h12(107) + h12(108) + h12(109) + h12(110) + h12(111) + h12(112) + h12(113) + h12(114) + h12(115) + h12(116) + h12(117) + h12(118) + h12(119) + h12(120) + h12(121) + h12(122) + h12(123) + h12(124) + h12(125 ) + h12(126) + h12(127) + h12(128) + h12(129) + h12(130) + h12(131) + h12(132) + h12(133) + h12(134) + h12(135) + h12(136) + h12(137) + h12(1 38) + h12(139) + h12(140) + h12(141) + h12(142) + h12(143) + h12(144) + h12(145) + h12(146) + h12(147) + h12(148) + h12(149) >= 72870 subject to constraint2: h12(1) + h12(2) + h12(3) + h12(4) + h12(5) + h12(6) + h12(7) + h12(8) + h12(9) + h12(1 0) + h12(11) + h12(12) + h12(13) + h12(14) + h12(15) + h12(16) + h12(17) + h12(18) + h12(19) + h12(20) + h12(21) + h12(22) + h12(23) + h12(24) + h12(25) + h12(26) + h12(27) + h12(28) + h12(29) + h12(30) + h12(31) + h12(32) + h12(33) + h12(34) + h12(3 5) + h12(36) + h12(37) + h12(38) + h12(39) 125 + h12(40) + h12(41) + h12(42) + h12(43) + h12(44) + h12(45) + h12(46) + h12(47) + h12(48) + h12(49) + h12(50) + h12(51) + h12(52) + h12(53) + h12(54) + h12(55) + h12(56) + h12(57) + h12(58) + h12(59) + h12(60) + h12(61) + h12(62) + h12(63) + h12(64) + h12(65) + h12(66) + h12(67) + h12(68) + h12(69) + h12(70) + h 12(71) + h12(72) + h12(73) + h12(74) + h12(75) + h12(76) + h12(77) + h12(78) + h12(79) + h12(80) + h12(81) + h12(82) + h12(83) + h12(84) + h12(85) + h12(86) + h12(87) + h12(88) + h12(89) + h12(90) + h12(91) + h12(92) + h12(93) + h12(94) + h12(95) + h 12(96) + h12(97) + h12(98) + h12(99) + h12(100) + h12(101) + h12(102) + h12(103) + h12(104) + h12(105) + h12(106) + h12(107) + h12(108) + h12(109) + h12(110) + h12(111) + h12(112) + h12(113) + h12(114) + h12(115) + h12(116) + h12(117) + h12(118) + h12(119) + h12(120) + h12(121) + h12(122) + h12(123) + h12(124) + h12(125) + h12(126) + h12(127) + h12(128) + h12(129) + h12(130) + h12(131) + h12(132) + h12(133) + h12(134) + h12(135) + h12(136) + h12(137) + h12(138) + h12(139) + h12(140) + h12(141) + h12(142) + h12(143) + h12(144) + h12(145) + h12(146) + h12(147) + h12(148) + h12(149) <= 72930 subject to constraint3: h21(1) + h21(2) + h21(3) + h21(4) + h21(5) + h21(6) + h21(7) + h21(8) + h21(9) + h21(10) + h21(11) + h21(12) + h21(13) + h21(14) + h21(15) + h21(16) + h21(17) + h21(18) + h21(19) + h21(20) + h21(21) + h21(22) + h21(23) + h21(24) + h21(25) + h21(26) + h21(27) + h21(28) + h21(29) + h21(30) + h21(31) + h21(32) + h21(33) + h21(34) + h21(35) + h21(36) + h21(37) + h21(38) + h21(39) + h21(40) + h21(41) + h21(42) + h21(43) + h21(44) + h21(45) + h21(46) + h21(47) + h21(48) + h21(49) + h21(50) + h21(51) + h21(52) + h21(53) + h21(54) + h21(55) + h21(56) + h21(57) + h21(58) + h21(59) + h21(60) + h21(61) + h21(62) + h21(63) + h21(64) + h21(65) + h21(66) + h21(67) + h21(68) + h21(69) + h21(70) + h21(71) + h21(72) + h21(73) + h21(74) + h21(75) + h21(76) + h 21(77) + h21(78) + h21(79) + h21(80) + h21(81) + h21(82) + h21(83) + h21(84) + h21(85) + h21(86) + h21(87) + h21(88) + h21(89) + h21(90) + h21(91) + h21(92) + h21(93) + h21(94) + h21(95) + h21(96) + h21(97) + h21(98) + h21(99) + h21(100) + h21(101) + h21(102) + h21(103) + h21(104) + h21(105) + h21(106) + h21(107) + h21(108) + h21(109) + h21(110) + h21(111) + h21(112) + h21(113) + h21(114) + h21(115) + h21(116) + h21(117) + h21(118) + h21(119) + h21(120) + h21(121) + h21(122) + h21(123) + h21( 124) + h21(125) + h21(126) + h21(127) + h21(128) + h21(129) + h21(130) + h21(131) + h21(132) + h21(133) + h21(134) + h21(135) + h21(136) + h21(137) + h21(138) + h21(139) 126 + h21(140) + h21(141) + h21(142) + h21(143) + h21(144) + h21(145) + h21(146) + h21(147) + h21(148) + h21(149) >= 72870 subject to constraint4: h21(1) + h21(2) + h21(3) + h21(4) + h21(5) + h2 1(6) + h21(7) + h21(8) + h21(9) + h21(10) + h21(11) + h21(12) + h21(13) + h21(14) + h21(15) + h21(16) + h21(17) + h21(18) + h21(19) + h21(20) + h21(21) + h21(22) + h21(23) + h21(24) + h21(25) + h21(26) + h21(27) + h21(28) + h21(29) + h21(30) + h21(31 ) + h21(32) + h21(33) + h21(34) + h21(35) + h21(36) + h21(37) + h21(38) + h21(39) + h21(40) + h21(41) + h21(42) + h21(43) + h21(44) + h21(45) + h21(46) + h21(47) + h21(48) + h21(49) + h21(50) + h21(51) + h21(52) + h21(53) + h21(54) + h21(55) + h21(56 ) + h21(57) + h21(58) + h21(59) + h21(60) + h21(61) + h21(62) + h21(63) + h21(64) + h21(65) + h21(66) + h21(67) + h21(68) + h21(69) + h21(70) + h21(71) + h21(72) + h21(73) + h21(74) + h21(75) + h21(76) + h21(77) + h21(78) + h21(79) + h21(80) + h21(81 ) + h21(82) + h21(83) + h21(84) + h21(85) + h21(86) + h21(87) + h21(88) + h21(89) + h21(90) + h21(91) + h21(92) + h21(93) + h21(94) + h21(95) + h21(96) + h21(97) + h21(98) + h21(99) + h21(100) + h21(101) + h21(102) + h21(103) + h21(104) + h21(105) + h21(106) + h21(107) + h21(108) + h21(109) + h21(110) + h21(111) + h21(112) + h21(113) + h21(114) + h21(115) + h21(116) + h21(117) + h21(118) + h21(119) + h21(120) + h21(121) + h21(122) + h21(123) + h21(124) + h21(125) + h21(126) + h21(127) + h21(128) + h21(129) + h21(130) + h21(131) + h21(132) + h21(133) + h21(134) + h21(135) + h21(136) + h21(137) + h21(138) + h21(139) + h21(140) + h21(141) + h21(142) + h21(143) + h21(144) + h21(145) + h21(146) + h21(147) + h21(148) + h21(149) <= 7293 0 variable bounds: 15 <= D12(1) <= 60 15 <= D12(2) <= 60 15 <= D12(3) <= 60 15 <= D12(4) <= 60 15 <= D12(5) <= 60 15 <= D21(1) <= 60 15 <= D21(2) <= 60 15 <= D21(3) <= 60 15 <= D21(4) <= 60 15 <= D21(5) <= 60 180 <= h12(1) <= 1860 180 <= h12(2) <= 1860 180 <= h12(3) <= 1860 180 <= h12(4) <= 1860 180 <= h12(5) <= 1860 180 <= h12(6) <= 1860 180 <= h12(7) <= 1860 180 <= h12(8) <= 1860 127 180 <= h12(9) <= 1860 180 <= h12(10) <= 1860 180 <= h12(11) <= 1860 180 <= h12(12) <= 1860 180 <= h12(13) <= 1860 180 <= h12(14) <= 1860 180 <= h12(15) <= 1860 180 <= h12(16) <= 1860 180 <= h12(17) <= 1860 180 <= h12(18) <= 1860 180 <= h12(19) <= 1860 180 <= h12(20) <= 1860 180 <= h12(21) <= 1860 180 <= h12(22) <= 1860 180 <= h12(23) <= 1860 180 <= h12(24) <= 1860 180 <= h12(25) <= 1860 180 <= h12(26) <= 1860 180 <= h12(27) <= 1860 180 <= h12(28) <= 1860 180 <= h12(29) <= 1860 180 <= h12(30) <= 1860 180 <= h12(31) <= 1860 180 <= h12(32) <= 1860 180 <= h12(33) <= 1860 180 <= h12(34) <= 1860 180 <= h12(35) <= 1860 180 <= h12(36) <= 1860 180 <= h12(37) <= 1860 180 <= h12(38) <= 1860 180 <= h12(39) <= 1860 180 <= h12(40) <= 1860 180 <= h12(41) <= 1860 180 <= h12(42) <= 1860 180 <= h12(43) <= 1860 180 <= h12(44) <= 1860 180 <= h12(45) <= 1860 180 <= h12(46) <= 1860 180 <= h12(47) <= 1860 180 <= h12(48) <= 1860 180 <= h12(49) <= 1860 180 <= h12(50) <= 1860 180 <= h12(51) <= 1860 180 <= h12(52) <= 1860 180 <= h12(53) <= 1860 180 <= h12(54) <= 1860 180 <= h12(55) <= 1860 180 <= h12(56) <= 1860 180 <= h12(57) <= 1860 180 <= h12(58) <= 1860 180 <= h12(59) <= 1860 180 <= h12(60) <= 1860 180 <= h12(61) <= 1860 180 <= h12(62) <= 1860 180 <= h12(63) <= 1860 180 <= h12(64) <= 1860 180 <= h12(65) <= 1860 180 <= h12(66) <= 1860 180 <= h12(67) <= 1860 128 180 <= h12(68) <= 1860 180 <= h12(69) <= 1860 180 <= h12(70) <= 1860 180 <= h12(71) <= 1860 180 <= h12(72) <= 1860 180 <= h12(73) <= 1860 180 <= h12(74) <= 1860 180 <= h12(75) <= 1860 180 <= h12(76) <= 1860 180 <= h12(77) <= 1860 180 <= h12(78) <= 1860 180 <= h12(79) <= 1860 180 <= h12(80) <= 1860 180 <= h12(81) <= 1860 180 <= h12(82) <= 1860 180 <= h12(83) <= 1860 180 <= h12(84) <= 1860 180 <= h12(85) <= 1860 180 <= h12(86) <= 1860 180 <= h12(87) <= 1860 180 <= h12(88) <= 1860 180 <= h12(89) <= 1860 180 <= h12(90) <= 1860 180 <= h12(91) <= 1860 180 <= h12(92) <= 1860 180 <= h12(93) <= 1860 180 <= h12(94) <= 1860 180 <= h12(95) <= 1860 180 <= h12(96) <= 1860 180 <= h12(97) <= 1860 180 <= h12(98) <= 1860 180 <= h12(99) <= 1860 180 <= h12(100) <= 1860 180 <= h12(101) <= 1860 180 <= h12(102) <= 1860 180 <= h12(103) <= 1860 180 <= h12(104) <= 1860 180 <= h12(105) <= 1860 180 <= h12(106) <= 1860 180 <= h12(107) <= 1860 180 <= h12(108) <= 1860 180 <= h12(109) <= 1860 180 <= h12(110) <= 1860 180 <= h12(111) <= 1860 180 <= h12(112) <= 1860 180 <= h12(113) <= 1860 180 <= h12(114) <= 1860 180 <= h12(115) <= 1860 180 <= h12(116) <= 1860 180 <= h12(117) <= 1860 180 <= h12(118) <= 1860 180 <= h12(119) <= 1860 180 <= h12(120) <= 1860 180 <= h12(121) <= 1860 180 <= h12(122) <= 1860 180 <= h12(123) <= 1860 180 <= h12(124) <= 1860 180 <= h12(125) <= 1860 180 <= h12(126) <= 1860 129 180 <= h12(127) <= 1860 180 <= h12(128) <= 1860 180 <= h12(129) <= 1860 180 <= h12(130) <= 1860 180 <= h12(131) <= 1860 180 <= h12(132) <= 1860 180 <= h12(133) <= 1860 180 <= h12(134) <= 1860 180 <= h12(135) <= 1860 180 <= h12(136) <= 1860 180 <= h12(137) <= 1860 180 <= h12(138) <= 1860 180 <= h12(139) <= 1860 180 <= h12(140) <= 1860 180 <= h12(141) <= 1860 180 <= h12(142) <= 1860 180 <= h12(143) <= 1860 180 <= h12(144) <= 1860 180 <= h12(145) <= 1860 180 <= h12(146) <= 1860 180 <= h12(147) <= 1860 180 <= h12(148) <= 1860 180 <= h12(149) <= 1860 180 <= h21(1) <= 1860 180 <= h21(2) <= 1860 180 <= h21(3) <= 1860 180 <= h21(4) <= 1860 180 <= h21(5) <= 1860 180 <= h21(6) <= 1860 180 <= h21(7) <= 1860 180 <= h21(8) <= 1860 180 <= h21(9) <= 1860 180 <= h21(10) <= 1860 180 <= h21(11) <= 1860 180 <= h21(12) <= 1860 180 <= h21(13) <= 1860 180 <= h21(14) <= 1860 180 <= h21(15) <= 1860 180 <= h21(16) <= 1860 180 <= h21(17) <= 1860 180 <= h21(18) <= 1860 180 <= h21(19) <= 1860 180 <= h21(20) <= 1860 180 <= h21(21) <= 1860 180 <= h21(22) <= 1860 180 <= h21(23) <= 1860 180 <= h21(24) <= 1860 180 <= h21(25) <= 1860 180 <= h21(26) <= 1860 180 <= h21(27) <= 1860 180 <= h21(28) <= 1860 180 <= h21(29) <= 1860 180 <= h21(30) <= 1860 180 <= h21(31) <= 1860 180 <= h21(32) <= 1860 180 <= h21(33) <= 1860 180 <= h21(34) <= 1860 180 <= h21(35) <= 1860 130 180 <= h21(36) <= 1860 180 <= h21(37) <= 1860 180 <= h21(38) <= 1860 180 <= h21(39) <= 1860 180 <= h21(40) <= 1860 180 <= h21(41) <= 1860 180 <= h21(42) <= 1860 180 <= h21(43) <= 1860 180 <= h21(44) <= 1860 180 <= h21(45) <= 1860 180 <= h21(46) <= 1860 180 <= h21(47) <= 1860 180 <= h21(48) <= 1860 180 <= h21(49) <= 1860 180 <= h21(50) <= 1860 180 <= h21(51) <= 1860 180 <= h21(52) <= 1860 180 <= h21(53) <= 1860 180 <= h21(54) <= 1860 180 <= h21(55) <= 1860 180 <= h21(56) <= 1860 180 <= h21(57) <= 1860 180 <= h21(58) <= 1860 180 <= h21(59) <= 1860 180 <= h21(60) <= 1860 180 <= h21(61) <= 1860 180 <= h21(62) <= 1860 180 <= h21(63) <= 1860 180 <= h21(64) <= 1860 180 <= h21(65) <= 1860 180 <= h21(66) <= 1860 180 <= h21(67) <= 1860 180 <= h21(68) <= 1860 180 <= h21(69) <= 1860 180 <= h21(70) <= 1860 180 <= h21(71) <= 1860 180 <= h21(72) <= 1860 180 <= h21(73) <= 1860 180 <= h21(74) <= 1860 180 <= h21(75) <= 1860 180 <= h21(76) <= 1860 180 <= h21(77) <= 1860 180 <= h21(78) <= 1860 180 <= h21(79) <= 1860 180 <= h21(80) <= 1860 180 <= h21(81) <= 1860 180 <= h21(82) <= 1860 180 <= h21(83) <= 1860 180 <= h21(84) <= 1860 180 <= h21(85) <= 1860 180 <= h21(86) <= 1860 180 <= h21(87) <= 1860 180 <= h21(88) <= 1860 180 <= h21(89) <= 1860 180 <= h21(90) <= 1860 180 <= h21(91) <= 1860 180 <= h21(92) <= 1860 180 <= h21(93) <= 1860 180 <= h21(94) <= 1860 131 180 <= h21(95) <= 1860 180 <= h21(96) <= 1860 180 <= h21(97) <= 1860 180 <= h21(98) <= 1860 180 <= h21(99) <= 1860 180 <= h21(100) <= 1860 180 <= h21(101) <= 1860 180 <= h21(102) <= 1860 180 <= h21(103) <= 1860 180 <= h21(104) <= 1860 180 <= h21(105) <= 1860 180 <= h21(106) <= 1860 180 <= h21(107) <= 1860 180 <= h21(108) <= 1860 180 <= h21(109) <= 1860 180 <= h21(110) <= 1860 180 <= h21(111) <= 1860 180 <= h21(112) <= 1860 180 <= h21(113) <= 1860 180 <= h21(114) <= 1860 180 <= h21(115) <= 1860 180 <= h21(116) <= 1860 180 <= h21(117) <= 1860 180 <= h21(118) <= 1860 180 <= h21(119) <= 1860 180 <= h21(120) <= 1860 180 <= h21(121) <= 1860 180 <= h21(122) <= 1860 180 <= h21(123) <= 1860 180 <= h21(124) <= 1860 180 <= h21(125) <= 1860 180 <= h21(126) <= 1860 180 <= h21(127) <= 1860 180 <= h21(128) <= 1860 180 <= h21(129) <= 1860 180 <= h21(130) <= 1860 180 <= h21(131) <= 1860 180 <= h21(132) <= 1860 180 <= h21(133) <= 1860 180 <= h21(134) <= 1860 180 <= h21(135) <= 1860 180 <= h21(136) <= 1860 180 <= h21(137) <= 1860 180 <= h21(138) <= 1860 180 <= h21(139) <= 1860 180 <= h21(140) <= 1860 180 <= h21(141) <= 1860 180 <= h21(142) <= 1860 180 <= h21(143) <= 1860 180 <= h21(144) <= 1860 180 <= h21(145) <= 1860 180 <= h21(146) <= 1860 180 <= h21(147) <= 1860 180 <= h21(148) <= 1860 180 <= h21(149) <= 1860 Solving problem using ga. Single objective optimizat ion: 308 Variable(s) 132 308 Integer variable(s) 4 Linear inequality constraint(s) Options: CreationFcn: @gacreationuniformint CrossoverFcn: @crossoverlaplace SelectionFcn: @selectiontournament MutationFcn: @mutationpower Elapsed time is 25689.863 956 seconds. Optimization terminated: average change in the penalty fitness value less than options.FunctionTolerance and constraint violation is less than optio ns.ConstraintTolerance. solution = struct with fields: D12: [15 15 15 15 15] D21: [15 15 15 15 15] h12: [149×1 double] h21: [149×1 double] reasonSolverStopped = SolverConvergedSuccessfully objectiveValue = 6.4564e+04 133 D7. Data Optimasi Skema 7 Elapsed time is 8.630044 seconds. OptimizationProblem : Solve for: D12, D21, h12, h21 where: D12, D21, h12, h21 integer minimize : model(D12, D21, h12, h21) subject to constraint1: h12(1) + h12(2) + h12(3) + h12(4) + h12(5) + h12(6) + h12(7) + h12(8) + h12(9) + h12(1 0) + h12(11) + h12(12) + h12(13) + h12(14) + h12(15) + h12(16) + h12(17) + h12(18) + h12(19) + h12(20) + h12(21) + h12(22) + h12(23) + h12(24) + h12(25) + h12(26) + h12(27) + h12(28) + h12(29) + h12(30) + h12(31) + h12(32) + h12(33) + h12(34) + h12(3 5) + h12(36) + h12(37) + h12(38) + h12(39) + h12(40) + h12(41) + h12(42) + h12(43) + h12(44) + h12(45) + h12(46) + h12(47) + h12(48) + h12(49) + h12(50) + h12(51) + h12(52) + h12(53) + h12(54) + h12(55) + h12(56) + h12(57) + h12(58) + h12(59) + h12(60) + h12(61) + h12(62) + h12(63) + h12(64) + h12(65) + h12(66) + h12(67) + h12(68) + h12(69) + h12(70) + h12( 71) + h12(72) + h12(73) + h12(74) + h12(75) + h12(76) + h12(77) + h12(78) + h12(79) + h12(80) + h12(81) + h12(82) + h12(83) + h12(84) + h12(85) + h12(86) + h12(87) + h12(88) + h12(89) + h12(90) + h12(91) + h12(92) + h12(93) + h12(94) + h12(95) + h12( 96) + h12(97) + h12(98) + h12(99) + h12(100) + h12(101) + h12(102) + h12(103) + h12(104) + h12(105) + h12(106) + h12(107) + h12(108) + h12(109) + h12(110) + h12(111) + h12(112) + h12(113) + h12(114) + h12(115) + h12(116) + h12(117) + h12(118) + h1 2(119) + h12(120) + h12(121) + h12(122) + h12(123) + h12(124) + h12(125) + h12(126) + h12(127) + h12(128) + h12(129) + h12(130) + h12(131) + h12(132) + h12(133) + h12(134) + h12(135) + h12(136) + h12(137) + h12(138) + h12(139) + h12(140) + h12(141) + h12(142) + h12(143) + h12(144) + h12(145) + h12(146) + h12(147) + h12(148) + h12(149) >= 72870 subject to constraint2: h12(1) + h12(2) + h12(3) + h12(4) + h12(5) + h12(6) + h12(7) + h12(8) + h12(9) + h12(10) + h12(11) + h12(12) + h12(13) + h12(14) + h12(15) + h12(16) + h12(17) + h12(18) + h12(19) + h12(20) + h12(21) + h12(22) + h12(23) + h12(24) + h12(25) + h12(26) + h12(27) + h12(28) + h12(29) + h12(30) + h12(31) + h12(32) + h12(33) + h12(34) + h12(35) + h12(36) + h12(37) + h12(38) + h12(39) 134 + h12(40) + h12(41) + h12(42) + h12(43) + h12(44) + h12(45) + h12(46) + h12(47) + h12(48) + h12(49) + h12(50) + h12(51) + h12(52) + h12(53) + h12(54) + h12(55) + h12(56) + h12(57) + h12(58) + h12(59) + h12(60) + h12(61) + h12(62) + h12(63) + h12(64) + h12(65) + h12(66) + h12(67) + h12(68) + h12(69) + h12(70) + h12(71) + h12(72) + h12(73) + h12(74) + h12(75) + h12(76) + h12(77) + h12(78) + h12(79) + h12(80) + h12(81) + h12(82) + h12(83) + h12(84) + h12(85) + h12(86) + h12(87) + h12(88) + h12(89) + h12(90) + h12(91) + h12(92) + h12(93) + h12(94) + h12(95) + h12(96) + h12(97) + h12(98) + h12(99) + h12(100) + h12(101) + h12(102) + h12(103) + h12(104) + h12(105) + h12(106) + h12(107) + h12(108) + h12(109) + h12(110) + h12(111) + h12(112) + h12(113) + h12(114) + h12(115) + h12(116) + h12(117) + h12(118) + h12(119) + h12(120) + h12(121) + h12(122) + h12(123) + h12 (124) + h12(125) + h12(126) + h12(127) + h12(128) + h12(129) + h12(130) + h12(131) + h12(132) + h12(133) + h12(134) + h12(135) + h12(136) + h12(137) + h12(138) + h12(139) + h12(140) + h12(141) + h12(142) + h12(143) + h12(144) + h12(145) + h12(146) + h12(147) + h12(148) + h12(149) <= 72930 subject to constraint3: h21(1) + h21(2) + h21(3) + h21(4) + h21(5) + h21(6) + h21(7) + h21(8) + h21(9) + h21(10) + h21(11) + h21(12) + h21(13) + h21(14) + h21(15) + h21(16) + h21(17) + h21(18) + h21(19 ) + h21(20) + h21(21) + h21(22) + h21(23) + h21(24) + h21(25) + h21(26) + h21(27) + h21(28) + h21(29) + h21(30) + h21(31) + h21(32) + h21(33) + h21(34) + h21(35) + h21(36) + h21(37) + h21(38) + h21(39) + h21(40) + h21(41) + h21(42) + h21(43) + h21(44) + h21(45) + h21(46) + h21(47) + h21(48) + h21(49) + h21(50) + h21(51) + h21(52) + h21(53) + h21(54) + h21(55) + h21(56) + h21(57) + h21(58) + h21(59) + h21(60) + h21(61) + h21(62) + h21(63) + h21(64) + h21(65) + h21(66) + h21(67) + h21(68) + h21(69) + h21(70) + h21(71) + h21(72) + h21(73) + h21(74) + h21(75) + h21(76) + h21(77) + h21(78) + h21(79) + h21(80) + h21(81) + h21(82) + h21(83) + h21(84) + h21(85) + h21(86) + h21(87) + h21(88) + h21(89) + h21(90) + h21(91) + h21(92) + h21(93) + h21(94) + h21(95) + h21(96) + h21(97) + h21(98) + h21(99) + h21(100) + h21(101) + h21(102) + h21(103) + h21(104) + h21(105) + h21(106) + h21(107) + h21(108) + h21(109) + h21(110) + h21(111) + h21(112) + h21(113 ) + h21(114) + h21(115) + h21(116) + h21(117) + h21(118) + h21(119) + h21(120) + h21(121) + h21(122) + h21(123) + h21(124) + h21(125) + h21(126) + h21(127) + h21(128) + h21(129) + h21(130) + h21(131) + h21(132) + h21(133) + h21(134) + h21(135) + h21(136) + h21(137) + h21(138) + h21(139) 135 + h21(140) + h21(141) + h21(142) + h21(143) + h21(144) + h21(145) + h21(146) + h21(147) + h21(148) + h21(149) >= 72870 subject to constraint4: h21(1) + h21(2) + h21(3) + h21(4) + h21(5) + h21(6) + h21(7) + h21(8) + h21(9) + h21(10) + h21(11) + h21(1 2) + h21(13) + h21(14) + h21(15) + h21(16) + h21(17) + h21(18) + h21(19) + h21(20) + h21(21) + h21(22) + h21(23) + h21(24) + h21(25) + h21(26) + h21(27) + h21(28) + h21(29) + h21(30) + h21(31) + h21(32) + h21(33) + h21(34) + h21(35) + h21(36) + h21(3 7) + h21(38) + h21(39) + h21(40) + h21(41) + h21(42) + h21(43) + h21(44) + h21(45) + h21(46) + h21(47) + h21(48) + h21(49) + h21(50) + h21(51) + h21(52) + h21(53) + h21(54) + h21(55) + h21(56) + h21(57) + h21(58) + h21(59) + h21(60) + h21(61) + h21(6 2) + h21(63) + h21(64) + h21(65) + h21(66) + h21(67) + h21(68) + h21(69) + h21(70) + h21(71) + h21(72) + h21(73) + h21(74) + h21(75) + h21(76) + h21(77) + h21(78) + h21(79) + h21(80) + h21(81) + h21(82) + h21(83) + h21(84) + h21(85) + h21(86) + h21(8 7) + h21(88) + h21(89) + h21(90) + h21(91) + h21(92) + h21(93) + h21(94) + h21(95) + h21(96) + h21(97) + h21(98) + h21(99) + h21(100) + h21(101) + h21(102) + h21(103) + h21(104) + h21(105) + h21(106) + h21(107) + h21(108) + h21(109) + h21(110) + h21( 111) + h21(112) + h21(113) + h21(114) + h21(115) + h21(116) + h21(117) + h21(118) + h21(119) + h21(120) + h21(121) + h21(122) + h21(123) + h21(124) + h21(125) + h21(126) + h21(127) + h21(128) + h21(129) + h21(130) + h21(131) + h21(132) + h21(133) + h21(134) + h21(135) + h21(136) + h21(137) + h21(138) + h21(139) + h21(140) + h21(141) + h21(142) + h21(143) + h21(144) + h21(145) + h21(146) + h21(147) + h21(148) + h21(149) <= 72930 subject to constraint5: D12(1) + D12(2) + D12(3) + D12(4 ) + D12(5) >= 161 subject to constraint6: D12(1) + D12(2) + D12(3) + D12(4) + D12(5) <= 171 subject to constraint7: D21(1) + D21(2) + D21(3) + D21(4) + D21(5) >= 152 subject to constraint8: D21(1) + D21(2) + D21(3) + D21(4) + D21(5) <= 162 variable bounds: 15 <= D12(1) <= 60 15 <= D12(2) <= 60 15 <= D12(3) <= 60 15 <= D12(4) <= 60 15 <= D12(5) <= 60 15 <= D21(1) <= 60 15 <= D21(2) <= 60 136 15 <= D21(3) <= 60 15 <= D21(4) <= 60 15 <= D21(5) <= 60 180 <= h12(1) <= 1860 180 <= h12(2) <= 1860 180 <= h12(3) <= 1860 180 <= h12(4) <= 1860 180 <= h12(5) <= 1860 180 <= h12(6) <= 1860 180 <= h12(7) <= 1860 180 <= h12(8) <= 1860 180 <= h12(9) <= 1860 180 <= h12(10) <= 1860 180 <= h12(11) <= 1860 180 <= h12(12) <= 1860 180 <= h12(13) <= 1860 180 <= h12(14) <= 1860 180 <= h12(15) <= 1860 180 <= h12(16) <= 1860 180 <= h12(17) <= 1860 180 <= h12(18) <= 1860 180 <= h12(19) <= 1860 180 <= h12(20) <= 1860 180 <= h12(21) <= 1860 180 <= h12(22) <= 1860 180 <= h12(23) <= 1860 180 <= h12(24) <= 1860 180 <= h12(25) <= 1860 180 <= h12(26) <= 1860 180 <= h12(27) <= 1860 180 <= h12(28) <= 1860 180 <= h12(29) <= 1860 180 <= h12(30) <= 1860 180 <= h12(31) <= 1860 180 <= h12(32) <= 1860 180 <= h12(33) <= 1860 180 <= h12(34) <= 1860 180 <= h12(35) <= 1860 180 <= h12(36) <= 1860 180 <= h12(37) <= 1860 180 <= h12(38) <= 1860 180 <= h12(39) <= 1860 180 <= h12(40) <= 1860 180 <= h12(41) <= 1860 180 <= h12(42) <= 1860 180 <= h12(43) <= 1860 180 <= h12(44) <= 1860 180 <= h12(45) <= 1860 180 <= h12(46) <= 1860 180 <= h12(47) <= 1860 180 <= h12(48) <= 1860 180 <= h12(49) <= 1860 180 <= h12(50) <= 1860 180 <= h12(51) <= 1860 180 <= h12(52) <= 1860 180 <= h12(53) <= 1860 180 <= h12(54) <= 1860 180 <= h12(55) <= 1860 137 180 <= h12(56) <= 1860 180 <= h12(57) <= 1860 180 <= h12(58) <= 1860 180 <= h12(59) <= 1860 180 <= h12(60) <= 1860 180 <= h12(61) <= 1860 180 <= h12(62) <= 1860 180 <= h12(63) <= 1860 180 <= h12(64) <= 1860 180 <= h12(65) <= 1860 180 <= h12(66) <= 1860 180 <= h12(67) <= 1860 180 <= h12(68) <= 1860 180 <= h12(69) <= 1860 180 <= h12(70) <= 1860 180 <= h12(71) <= 1860 180 <= h12(72) <= 1860 180 <= h12(73) <= 1860 180 <= h12(74) <= 1860 180 <= h12(75) <= 1860 180 <= h12(76) <= 1860 180 <= h12(77) <= 1860 180 <= h12(78) <= 1860 180 <= h12(79) <= 1860 180 <= h12(80) <= 1860 180 <= h12(81) <= 1860 180 <= h12(82) <= 1860 180 <= h12(83) <= 1860 180 <= h12(84) <= 1860 180 <= h12(85) <= 1860 180 <= h12(86) <= 1860 180 <= h12(87) <= 1860 180 <= h12(88) <= 1860 180 <= h12(89) <= 1860 180 <= h12(90) <= 1860 180 <= h12(91) <= 1860 180 <= h12(92) <= 1860 180 <= h12(93) <= 1860 180 <= h12(94) <= 1860 180 <= h12(95) <= 1860 180 <= h12(96) <= 1860 180 <= h12(97) <= 1860 180 <= h12(98) <= 1860 180 <= h12(99) <= 1860 180 <= h12(100) <= 1860 180 <= h12(101) <= 1860 180 <= h12(102) <= 1860 180 <= h12(103) <= 1860 180 <= h12(104) <= 1860 180 <= h12(105) <= 1860 180 <= h12(106) <= 1860 180 <= h12(107) <= 1860 180 <= h12(108) <= 1860 180 <= h12(109) <= 1860 180 <= h12(110) <= 1860 180 <= h12(111) <= 1860 180 <= h12(112) <= 1860 180 <= h12(113) <= 1860 180 <= h12(114) <= 1 860 138 180 <= h12(115) <= 1860 180 <= h12(116) <= 1860 180 <= h12(117) <= 1860 180 <= h12(118) <= 1860 180 <= h12(119) <= 1860 180 <= h12(120) <= 1860 180 <= h12(121) <= 1860 180 <= h12(122) <= 1860 180 <= h12(123) <= 1860 180 <= h12(124) <= 1860 180 <= h12(125) <= 1860 180 <= h12(126) <= 1860 180 <= h12(127) <= 1860 180 <= h12(128) <= 1860 180 <= h12(129) <= 1860 180 <= h12(130) <= 1860 180 <= h12(131) <= 1860 180 <= h12(132) <= 1860 180 <= h12(133) <= 1860 180 <= h12(134) <= 1860 180 <= h12(135) <= 1860 180 <= h12(136) <= 1860 180 <= h12(137) <= 1860 180 <= h12(138) <= 1860 180 <= h12(139) <= 1860 180 <= h12(140) <= 1860 180 <= h12(141) <= 1860 180 <= h12(142) <= 1860 180 <= h12(143) <= 1860 180 <= h12(144) <= 1860 180 <= h12(145) <= 1860 180 <= h12(146) <= 1860 180 <= h12(147) <= 1860 180 <= h12(148) <= 1860 180 <= h12(149) <= 1860 180 <= h21(1) <= 1860 180 <= h21(2) <= 1860 180 <= h21(3) <= 1860 180 <= h21(4) <= 1860 180 <= h21(5) <= 1860 180 <= h21(6) <= 1860 180 <= h21(7) <= 1860 180 <= h21(8) <= 1860 180 <= h21(9) <= 1860 180 <= h21(10) <= 1860 180 <= h21(11) <= 1860 180 <= h21(12) <= 1860 180 <= h21(13) <= 1860 180 <= h21(14) <= 1860 180 <= h21(15) <= 1860 180 <= h21(16) <= 1860 180 <= h21(17) <= 1860 180 <= h21(18) <= 1860 180 <= h21(19) <= 1860 180 <= h21(20) <= 1860 180 <= h21(21) <= 1860 180 <= h21(22) <= 1860 180 <= h21(23) <= 1860 139 180 <= h21(24) <= 1860 180 <= h21(25) <= 1860 180 <= h21(26) <= 1860 180 <= h21(27) <= 1860 180 <= h21(28) <= 1860 180 <= h21(29) <= 1860 180 <= h21(30) <= 1860 180 <= h21(31) <= 1860 180 <= h21(32) <= 1860 180 <= h21(33) <= 1860 180 <= h21(34) <= 1860 180 <= h21(35) <= 1860 180 <= h21(36) <= 1860 180 <= h21(37) <= 1860 180 <= h21(38) <= 1860 180 <= h21(39) <= 1860 180 <= h21(40) <= 1860 180 <= h21(41) <= 1860 180 <= h21(42) <= 1860 180 <= h21(43) <= 1860 180 <= h21(44) <= 1860 180 <= h21(45) <= 1860 180 <= h21(46) <= 1860 180 <= h21(47) <= 1860 180 <= h21(48) <= 1860 180 <= h21(49) <= 1860 180 <= h21(50) <= 1860 180 <= h21(51) <= 1860 180 <= h21(52) <= 1860 180 <= h21(53) <= 1860 180 <= h21(54) <= 1860 180 <= h21(55) <= 1860 180 <= h21(56) <= 1860 180 <= h21(57) <= 1860 180 <= h21(58) <= 1860 180 <= h21(59) <= 1860 180 <= h21(60) <= 1860 180 <= h21(61) <= 1860 180 <= h21(62) <= 1860 180 <= h21(63) <= 1860 180 <= h21(64) <= 1860 180 <= h21(65) <= 1860 180 <= h21(66) <= 1860 180 <= h21(67) <= 1860 180 <= h21(68) <= 1860 180 <= h21(69) <= 1860 180 <= h21(70) <= 1860 180 <= h21(71) <= 1860 180 <= h21(72) <= 1860 180 <= h21(73) <= 1860 180 <= h21(74) <= 1860 180 <= h21(75) <= 1860 180 <= h21(76) <= 1860 180 <= h21(77) <= 1860 180 <= h21(78) <= 1860 180 <= h21(79) <= 1860 180 <= h21(80) <= 1860 180 <= h21(81) <= 1860 180 <= h21(82) <= 1860 140 180 <= h21(83) <= 1860 180 <= h21(84) <= 1860 180 <= h21(85) <= 1860 180 <= h21(86) <= 1860 180 <= h21(87) <= 1860 180 <= h21(88) <= 1860 180 <= h21(89) <= 1860 180 <= h21(90) <= 1860 180 <= h21(91) <= 1860 180 <= h21(92) <= 1860 180 <= h21(93) <= 1860 180 <= h21(94) <= 1860 180 <= h21(95) <= 1860 180 <= h21(96) <= 1860 180 <= h21(97) <= 1860 180 <= h21(98) <= 1860 180 <= h21(99) <= 1860 180 <= h21(100) <= 1860 180 <= h21(101) <= 1860 180 <= h21(102) <= 1860 180 <= h21(103) <= 1860 180 <= h21(104) <= 1860 180 <= h21(105) <= 1860 180 <= h21(106) <= 1860 180 <= h21(107) <= 1860 180 <= h21(108) <= 1860 180 <= h21(109) <= 1860 180 <= h21(110) <= 1860 180 <= h21(111) <= 1860 180 <= h21(112) <= 1860 180 <= h21(113) <= 1860 180 <= h21(114) <= 1860 180 <= h21(115) <= 1860 180 <= h21(116) <= 1860 180 <= h21(117) <= 1860 180 <= h21(118) <= 1860 180 <= h21(119) <= 1860 180 <= h21(120) <= 1860 180 <= h21(121) <= 1860 180 <= h21(122) <= 1860 180 <= h21(123) <= 1860 180 <= h21(124) <= 1860 180 <= h21(125) <= 1860 180 <= h21(126) <= 1860 180 <= h21(127) <= 1860 180 <= h21(128) <= 1860 180 <= h21(129) <= 1860 180 <= h21(130) <= 1860 180 <= h21(131) <= 1860 180 <= h21(132) <= 1860 180 <= h21(133) <= 186 0 180 <= h21(134) <= 1860 180 <= h21(135) <= 1860 180 <= h21(136) <= 1860 180 <= h21(137) <= 1860 180 <= h21(138) <= 1860 180 <= h21(139) <= 1860 180 <= h21(140) <= 1860 180 <= h21(141) <= 1860 141 180 <= h21(142) <= 1860 180 <= h21(143) <= 1860 180 <= h21(144) <= 1860 180 <= h21(145) <= 1860 180 <= h21(146) <= 1860 180 <= h21(147) <= 1860 180 <= h21(148) <= 1860 180 <= h21(149) <= 1860 Solving problem using ga. Single objective optimization: 308 Variable(s) 308 Integer variable(s) 8 Linear inequality constraint(s) Options: CreationFcn: @gacreationuniformint CrossoverFcn: @crossoverlaplace SelectionFcn: @selectiontournament MutationFcn: @mutationpower Elapsed time is 97793.473406 secon ds. Optimization terminated: average change in the penalty fitness value less than options.FunctionTolerance and constraint violation is less than options.ConstraintTolerance. solution = struct with fields: D12: [15 15 25 46 60] D21: [60 15 31 15 31] h12: [149×1 double] h21: [149×1 double] reasonSolverStopped = SolverConvergedSuccessfully objectiveValue = 6.4405e+04 142 D8. Data Optimasi Skema 8 Elapsed time is 7.474695 seconds. OptimizationProblem : Solve for: D12, D21, h12, h21 where: D12, D21, h12, h21 integer minimize : model(D12, D21, h12, h21) subject to constraint1: h12(1) + h12(2) + h12(3) + h12(4) + h12(5) + h12(6) + h12(7) + h12(8) + h12(9) + h12(10) + h12(11 ) + h12(12) + h12(13) + h12(14) + h12(15) + h12(16) + h12(17) + h12(18) + h12(19) + h12(20) + h12(21) + h12(22) + h12(23) + h12(24) + h12(25) + h12(26) + h12(27) + h12(28) + h12(29) + h12(30) + h12(31) + h12(32) + h12(33) + h12(34) + h12(35) + h12(36 ) + h12(37) + h12(38) + h12(39) + h12(40) + h12(41) + h12(42) + h12(43) + h12(44) + h12(45) + h12(46) + h12(47) + h12(48) + h12(49) + h12(50) + h12(51) + h12(52) + h12(53) + h12(54) + h12(55) + h12(56) + h12(57) + h12(58) + h12(59) + h12(60) + h12(61 ) + h12(62) + h12(63) + h12(64) + h12(65) + h12(66) + h12(67) + h12(68) + h12(69) + h12(70) + h12(71) + h12(72) + h12(73) + h12(74) + h12(75) + h12(76) + h 12(77) + h12(78) + h12(79) + h12(80) + h12(81) + h12(82) + h12(83) + h12(84) + h12(85) + h12(86) + h12(87) + h12(88) + h12(89) + h12(90) + h12(91) + h12(92) + h12(93) + h12(94) + h12(95) + h12(96) + h12(97) + h12(98) + h12(99) + h12(100) + h12(101) + h12(102) + h12(103) + h12(104) + h12(105) + h12(106) + h12(107) + h12(108) + h12(109) + h12(110) + h12(111) + h12(112) + h12(113) + h12(114) + h12(115) + h12(116) + h12(117) + h12(118) + h12(119) + h12(120) + h12(121) + h12(122) + h12(123) + h12(124) + h12(125) + h12(126) + h12(127) + h12(128) + h12(129) + h12(130) + h12(131) + h12(132) + h12(133) + h12(134) + h12(135) + h12(136) + h12(137) + h12(1 38) + h12(139) + h12(140) + h12(141) + h12(142) + h12(143) + h12(144) + h12(145) + h12(146) + h12(147) + h12(148) + h12(149) == 72900 subject to constraint2: h21(1) + h21(2) + h21(3 ) + h21(4) + h21(5) + h21(6) + h21(7) + h21(8) + h21(9) + h21(1 0) + h21(11) + h21(12) + h21(13) + h21(14) + h21(15) + h21(16) + h21(17) + h21(18) + h21(19) + h21(20) + h21(21) + h21(22) + h21(23) + h21(24) + h21(25) + h21(26) + h21(27) + h21(28) + h2 1(29) + h21(30) + h21(31) + h21(32) + h21(33) + h21(34) + h21(3 5) + h21(36) + h21(37) + h21(38) + h21(39) 143 + h21(40) + h21(41) + h21(42) + h21(43) + h21(44) + h21(45) + h21(46) + h21(47) + h21(48) + h21(49) + h21(50) + h21(51) + h21(52) + h21(53) + h21(54) + h21(55) + h21(56) + h21(57) + h21(58) + h21(59) + h21(60) + h21(61) + h21(62) + h21(63) + h21(64) + h21(65) + h21(66) + h21(67) + h21(68) + h21(69) + h21(70) + h21(71) + h21(72) + h21(73) + h21(74) + h21(75) + h21(76) + h21(77) + h21(78) + h21(79) + h21(80) + h21(81) + h21(82) + h21(83) + h21(84) + h21(85) + h21(86) + h21(87) + h21(88) + h21(89) + h21(90) + h21(91) + h21(92) + h21(93) + h21(94) + h21(95) + h21(96) + h21(97) + h21(98) + h21(99) + h21(100) + h21(101) + h21(102) + h21(103) + h21(104) + h21(105) + h21(106) + h21(107) + h21(108) + h21(109) + h21(110) + h21(111) + h21(112) + h21(113) + h21(114) + h21(115) + h21(116) + h21(117) + h21(118) + h21(119) + h21(120) + h21(121) + h21(122) + h21(123) + h21(124) + h21(125) + h21(12 6) + h21(127) + h21(128) + h21(129) + h21(130) + h21(131) + h21(132) + h21(133) + h21(134) + h21(135) + h21(136) + h21(137 ) + h21(138) + h21(139) + h21(140) + h21(141) + h21(142) + h21(143) + h21(144) + h21(145) + h21(146) + h21(147) + h21(148) + h21(149) == 72900 subject to constraint3: D12(1) + D12(2) + D12(3) + D12(4) + D12(5) == 166 subject to constraint4: D21(1) + D21(2) + D21(3) + D21(4) + D21(5) == 157 variable bounds: 15 <= D12(1) <= 60 15 <= D12(2) <= 60 15 <= D12(3) <= 60 15 <= D12(4) <= 60 15 <= D12(5) <= 60 15 <= D21(1) <= 60 15 <= D21(2) <= 60 15 <= D21(3) <= 60 15 <= D21(4) <= 60 15 <= D21(5) <= 60 180 <= h12(1) <= 1860 180 <= h12(2) <= 1860 180 <= h12(3) <= 1860 180 <= h12(4) <= 1860 180 <= h12(5) <= 1860 180 <= h12(6) <= 1860 180 <= h12(7) <= 1860 180 <= h12(8) <= 1860 180 <= h12(9) <= 1860 180 <= h12(10) <= 1860 180 <= h12(11) <= 1860 180 <= h12(12) <= 1860 180 <= h12(13) <= 1860 180 <= h12(14) <= 1860 144 180 <= h12(15) <= 1860 180 <= h12(16) <= 1860 180 <= h12(17) <= 1860 180 <= h12(18) <= 1860 180 <= h12(19) <= 1860 180 <= h12(20) <= 1860 180 <= h12(21) <= 1860 180 <= h12(22) <= 1860 180 <= h12(23) <= 1860 180 <= h12(24) <= 1860 180 <= h12(25) <= 1860 180 <= h12(26) <= 1860 180 <= h12(27) <= 1860 180 <= h12(28) <= 1860 180 <= h12(29) <= 1860 180 <= h12(30) <= 1860 180 <= h12(31) <= 1860 180 <= h12(32) <= 1860 180 <= h12(33) <= 1860 180 <= h12(34) <= 1860 180 <= h12(35) <= 1860 180 <= h12(36) <= 1860 180 <= h12(37) <= 1860 180 <= h12(38) <= 1860 180 <= h12(39) <= 1860 180 <= h12(40) <= 1860 180 <= h12(41) <= 1860 180 <= h12(42) <= 1860 180 <= h12(43) <= 1860 180 <= h12(44) <= 1860 180 <= h12(45) <= 1860 180 <= h12(46) <= 1860 180 <= h12(47) <= 1860 180 <= h12(48) <= 1860 180 <= h12(49) <= 1860 180 <= h12(50) <= 1860 180 <= h12(51) <= 1860 180 <= h12(52) <= 1860 180 <= h12(53) <= 1860 180 <= h12(54) <= 1860 180 <= h12(55) <= 1860 180 <= h12(56) <= 1860 180 <= h12(57) <= 1860 180 <= h12(58) <= 1860 180 <= h12(59) <= 1860 180 <= h12(60) <= 1860 180 <= h12(61) <= 1860 180 <= h12(62) <= 1860 180 <= h12(63) <= 1860 180 <= h12(64) <= 1860 180 <= h12(65) <= 1860 180 <= h12(66) <= 1860 180 <= h12(67) <= 1860 180 <= h12(68) <= 1860 180 <= h12(69) <= 1860 180 <= h12(70) <= 1860 180 <= h12(71) <= 1860 180 <= h12(72) <= 1860 180 <= h12(73) <= 1860 145 180 <= h12(74) <= 1860 180 <= h12(75) <= 1860 180 <= h12(76) <= 1860 180 <= h12(77) <= 1860 180 <= h12(78) <= 1860 180 <= h12(79) <= 1860 180 <= h12(80) <= 1860 180 <= h12(81) <= 1860 180 <= h12(82) <= 1860 180 <= h12(83) <= 1860 180 <= h12(84) <= 1860 180 <= h12(85) <= 1860 180 <= h12(86) <= 1860 180 <= h12(87) <= 1860 180 <= h12(88) <= 1860 180 <= h12(89) <= 1860 180 <= h12(90) <= 1860 180 <= h12(91) <= 1860 180 <= h12(92) <= 1860 180 <= h12(93) <= 1860 180 <= h12(94) <= 1860 180 <= h12(95) <= 1860 180 <= h12(96) <= 1860 180 <= h12(97) <= 1860 180 <= h12(98) <= 1860 180 <= h12(99) <= 1860 180 <= h12(100) <= 1860 180 <= h12(101) <= 1860 180 <= h12(102) <= 1860 180 <= h12(103) <= 1860 180 <= h12(104) <= 1860 180 <= h12(105) <= 1860 180 <= h12(106) <= 1860 180 <= h12(107) <= 1860 180 <= h12(108) <= 1860 180 <= h12(109) <= 1860 180 <= h12(110) <= 1860 180 <= h12(111) <= 1860 180 <= h12(112) <= 1860 180 <= h12(113) <= 1860 180 <= h12(114) <= 1860 180 <= h12(115) <= 1860 180 <= h12(116) <= 1860 180 <= h12(117) <= 1860 180 <= h12(118) <= 1860 180 <= h12(119) <= 1860 180 <= h12(120) <= 1860 180 <= h12(121) <= 1860 180 <= h12(122) <= 1860 180 <= h12(123) <= 1860 180 <= h12(124) <= 1860 180 <= h12(125) <= 1860 180 <= h12(126) <= 1860 180 <= h12(127) <= 1860 180 <= h12(128) <= 1860 180 <= h12(129) <= 1860 180 <= h12(130) <= 1860 180 <= h12(131) <= 1860 180 <= h12(132) <= 1860 146 180 <= h12(133) <= 1860 180 <= h12(134) <= 1860 180 <= h12(135) <= 1860 180 <= h12(136) <= 1860 180 <= h12(137) <= 1860 180 <= h12(138) <= 1860 180 <= h12(139) <= 1860 180 <= h12(140) <= 1860 180 <= h12(141) <= 1860 180 <= h12(142) <= 1860 180 <= h12(143) <= 1860 180 <= h12(144) <= 1860 180 <= h12(145) <= 1860 180 <= h12(146) <= 1860 180 <= h12(147) <= 1860 180 <= h12(148) <= 1860 180 <= h12(149) <= 1860 180 <= h21(1) <= 1860 180 <= h21(2) <= 1860 180 <= h21(3) <= 1860 180 <= h21(4) <= 1860 180 <= h21(5) <= 1860 180 <= h21(6) <= 1860 180 <= h21(7) <= 1860 180 <= h21(8) <= 1860 180 <= h21(9) <= 1860 180 <= h21(10) <= 1860 180 <= h21(11) <= 1860 180 <= h21(12) <= 1860 180 <= h21(13) <= 1860 180 <= h21(14) <= 1860 180 <= h21(15) <= 1860 180 <= h21(16) <= 1860 180 <= h21(17) <= 1860 180 <= h21(18) <= 1860 180 <= h21(19) <= 1860 180 <= h21(20) <= 1860 180 <= h21(21) <= 1860 180 <= h21(22) <= 1860 180 <= h21(23) <= 1860 180 <= h21(24) <= 1860 180 <= h21(25) <= 1860 180 <= h21(26) <= 1860 180 <= h21(27) <= 1860 180 <= h21(28) <= 1860 180 <= h21(29) <= 1860 180 <= h21(30) <= 1860 180 <= h21(31) <= 1860 180 <= h21(32) <= 1860 180 <= h21(33) <= 1860 180 <= h21(34) <= 1860 180 <= h21(35) <= 1860 180 <= h21(36) <= 1860 180 <= h21(37) <= 1860 180 <= h21(38) <= 1860 180 <= h21(39) <= 1860 180 <= h21(40) <= 1860 180 <= h21(41) <= 1860 147 180 <= h21(42) <= 1860 180 <= h21(43) <= 1860 180 <= h21(44) <= 1860 180 <= h21(45) <= 1860 180 <= h21(46) <= 1860 180 <= h21(47) <= 1860 180 <= h21(48) <= 1860 180 <= h21(49) <= 1860 180 <= h21(50) <= 1860 180 <= h21(51) <= 1860 180 <= h21(52) <= 1860 180 <= h21(53) <= 1860 180 <= h21(54) <= 1860 180 <= h21(55) <= 1860 180 <= h21(56) <= 1860 180 <= h21(57) <= 1860 180 <= h21(58) <= 1860 180 <= h21(59) <= 1860 180 <= h21(60) <= 1860 180 <= h21(61) <= 1860 180 <= h21(62) <= 1860 180 <= h21(63) <= 1860 180 <= h21(64) <= 1860 180 <= h21(65) <= 1860 180 <= h21(66) <= 1860 180 <= h21(67) <= 1860 180 <= h21(68) <= 1860 180 <= h21(69) <= 1860 180 <= h21(70) <= 1860 180 <= h21(71) <= 1860 180 <= h21(72) <= 1860 180 <= h21(73) <= 1860 180 <= h21(74) <= 1860 180 <= h21(75) <= 1860 180 <= h21(76) <= 1860 180 <= h21(77) <= 1860 180 <= h21(78) <= 1860 180 <= h21(79) <= 1860 180 <= h21(80) <= 1860 180 <= h21(81) <= 1860 180 <= h21(82) <= 1860 180 <= h21(83) <= 1860 180 <= h21(84) <= 1860 180 <= h21(85) <= 1860 180 <= h21(86) <= 1860 180 <= h21(87) <= 1860 180 <= h21(88) <= 1860 180 <= h21(89) <= 1860 180 <= h21(90) <= 1860 180 <= h21(91) <= 1860 180 <= h21(92) <= 1860 180 <= h21(93) <= 1860 180 <= h21(94) <= 1860 180 <= h21(95) <= 1860 180 <= h21(96) <= 1860 180 <= h21(97) <= 1860 180 <= h21(98) <= 1860 180 <= h21(99) <= 1860 180 <= h21(100) <= 1860 148 180 <= h21(101) <= 1860 180 <= h21(102) <= 1860 180 <= h21(103) <= 1860 180 <= h21(104) <= 1860 180 <= h21(105) <= 1860 180 <= h21(106) <= 1860 180 <= h21(107) <= 1860 180 <= h21(108) <= 1860 180 <= h21(109) <= 1860 180 <= h21(110) <= 1860 180 <= h21(111) <= 1860 180 <= h21(112) <= 1860 180 <= h21(113) <= 1860 180 <= h21(114) <= 1860 180 <= h21(115) <= 1860 180 <= h21(116) <= 1860 180 <= h21(117) <= 18 60 180 <= h21(118) <= 1860 180 <= h21(119) <= 1860 180 <= h21(120) <= 1860 180 <= h21(121) <= 1860 180 <= h21(122) <= 1860 180 <= h21(123) <= 1860 180 <= h21(124) <= 1860 180 <= h21(125) <= 1860 180 <= h21(126) <= 1860 180 <= h21(127) <= 1860 180 <= h21(128) <= 1860 180 <= h21(129) <= 1860 180 <= h21(130) <= 1860 180 <= h21(131) <= 1860 180 <= h21(132) <= 1860 180 <= h21(133) <= 1860 180 <= h21(134) <= 1860 180 <= h21(135) <= 1860 180 <= h21(136) <= 1860 180 <= h21(137) <= 1860 180 <= h21(138) <= 1860 180 <= h21(139) <= 1860 180 <= h21(140) <= 1860 180 <= h21(141) <= 1860 180 <= h21(142) <= 1860 180 <= h21(143) <= 1860 180 <= h21(144) <= 1860 180 <= h21(145) <= 1860 180 <= h21(146) <= 1860 180 <= h21(147) <= 1860 180 <= h21(148) <= 1860 180 <= h21(149) <= 1860 Solving problem using ga. Single objective optimization: 308 Variable(s) 308 Integer variable(s) 4 Linear equality constrain t(s) Options: CreationFcn: @gacreationuniformint CrossoverFcn: @crossoverlaplace 149 SelectionFcn: @selectiontournament MutationFcn: @mutationpower Elapsed time is 76819.458305 seconds. Optimization terminated: average change in the penalty fitnes s value less than options.FunctionTolerance and constraint violation is less than options.ConstraintTolerance. solution = struct with fields: D12: [15 15 26 50 60] D21: [60 40 27 15 15] h12: [149×1 double] h21: [149×1 double] reasonSolverStopped = SolverConvergedSuccessfully objectiveValue = 6.4400e+04 150 D9. Data Optimasi Skema 9 Elapsed time is 3.872121 seconds. OptimizationProblem : Solve for: D12, D21, h122, h124, h212, h214 where: D12, D21, h122, h124, h212, h214 integer minimize : model(D12, D21, h122, h124, h212, h214) subject to constraint1: h122(1) + h122(2) + h122(3) + h122(4) + h122(5) + h122(6) + h122(7) + h122(8) + h122(9) + h122(10) + h122(11) + h122(1 2) + h122(13) + h122(14) + h122(15) + h122(16) + h122(17) + h122(18) + h122(19) + h122(20) + h122(21) + h122(22) + h122(23) + h122(24) + h122(25) + h122(26) + h122(27) == 10800 subject to constraint2: h124(1) + h124(2) + h124(3) + h124(4) + h124(5) + h124(6) + h124(7) + h124(8) + h124(9) + h124(10) + h124 (11) + h124(12) + h124(13) + h124(14) + h124(15) + h124(16) + h124(17) + h124(18) + h124(19) + h124(20) + h124(21) + h124(22) + h124(23) + h124(24) + h124(25) + h124(26) + h124(27) + h124(28) + h124(29) == 11160 subject to constraint3: h212(1) + h212(2) + h212(3) + h212(4) + h212(5) + h212(6) + h212(7) + h212(8) + h212(9) + h212(10) + h212(11) + h212(12) + h212(13) + h212(14) + h212(15 ) + h212(16) + h212(17) + h212(18) + h212(19) + h212(20) + h212(21) + h212(22) + h212(23) + h212(24) + h212(25) == 10740 subject to constraint4: h214(1) + h214(2) + h214(3) + h214(4) + h214(5) + h214(6) + h214(7) + h214(8) + h214(9) + h214(10) + h214(11) + h214(12) + h214(13) + h214(14) + h214(15) + h214(16) + h214(17) + h214(18) + h214(19) + h214(20) + h214(21) + h214(22) + h214(23) == 10200 subject to constraint5: D12(1) + D12(2) + D12(3) + D12(4) + D12(5) == 166 subject to constraint6: D21(1) + D21(2) + D21(3) + D21(4) + D21(5) == 157 variable bounds: 15 <= D12(1) <= 60 15 <= D12(2) <= 60 15 <= D12(3) <= 60 15 <= D12(4) <= 60 15 <= D12(5) <= 60 15 <= D21(1) <= 60 15 <= D21(2) <= 60 151 15 <= D21(3) <= 60 15 <= D21(4) <= 60 15 <= D21(5) <= 60 240 <= h122(1) <= 780 240 <= h122(2) <= 780 240 <= h122(3) <= 780 240 <= h122(4) <= 780 240 <= h122(5) <= 780 240 <= h122(6) <= 780 240 <= h122(7) <= 780 240 <= h122(8) <= 780 240 <= h122(9) <= 780 240 <= h122(10) <= 780 240 <= h122(11) <= 780 240 <= h122(12) <= 780 240 <= h122(13) <= 780 240 <= h122(14) <= 780 240 <= h122(15) <= 780 240 <= h122(16) <= 780 240 <= h122(17) <= 780 240 <= h122(18) <= 780 240 <= h122(19) <= 780 240 <= h122(20) <= 780 240 <= h122(21) <= 780 240 <= h122(22) <= 780 240 <= h122(23) <= 780 240 <= h122(24) <= 780 240 <= h122(25) <= 780 240 <= h122(26) <= 780 240 <= h122(27) <= 780 240 <= h124(1) <= 780 240 <= h124(2) <= 780 240 <= h124(3) <= 780 240 <= h124(4) <= 780 240 <= h124(5) <= 780 240 <= h124(6) <= 780 240 <= h124(7) <= 780 240 <= h124(8) <= 780 240 <= h124(9) <= 780 240 <= h124(10) <= 780 240 <= h124(11) <= 780 240 <= h124(12) <= 780 240 <= h124(13) <= 780 240 <= h124(14) <= 780 240 <= h124(15) <= 780 240 <= h124(16) <= 780 240 <= h124(17) <= 780 240 <= h124(18) <= 780 240 <= h124(19) <= 780 240 <= h124(20) <= 780 240 <= h124(21) <= 780 240 <= h124(22) <= 780 240 <= h124(23) <= 780 240 <= h124(24) <= 780 240 <= h124(25) <= 780 240 <= h124(26) <= 780 240 <= h124(27) <= 780 152 240 <= h124(28) <= 780 240 <= h124(29) <= 780 300 <= h212(1) <= 780 300 <= h212(2) <= 780 300 <= h212(3) <= 780 300 <= h212(4) <= 780 300 <= h212(5) <= 780 300 <= h212(6) <= 780 300 <= h212(7) <= 780 300 <= h212(8) <= 780 300 <= h212(9) <= 780 300 <= h212(10) <= 780 300 <= h212(11) <= 780 300 <= h212(12) <= 780 300 <= h212(13) <= 780 300 <= h212(14) <= 780 300 <= h212(15) <= 780 300 <= h212(16) <= 780 300 <= h212(17) <= 780 300 <= h212(18) <= 780 300 <= h212(19) <= 780 300 <= h212(20) <= 780 300 <= h212(21) <= 780 300 <= h212(22) <= 780 300 <= h212(23) <= 780 300 <= h212(24) <= 780 300 <= h212(25) <= 780 300 <= h214(1) <= 900 300 <= h214(2) <= 900 300 <= h214(3) <= 900 300 <= h214(4) <= 900 300 <= h214(5) <= 900 300 <= h214(6) <= 900 300 <= h214(7) <= 900 300 <= h214(8) <= 900 300 <= h214(9) <= 900 300 <= h214(10) <= 900 300 <= h214(11) <= 900 300 <= h214(12) <= 900 300 <= h214(13) <= 900 300 <= h214(14) <= 900 300 <= h214(15) <= 900 300 <= h214(16) <= 900 300 <= h214(17) <= 900 300 <= h214(18) <= 900 300 <= h214(19) <= 900 300 <= h214(20) <= 900 300 <= h214(21) <= 900 300 <= h214(22) <= 900 300 <= h214(23) <= 900 Solving problem using ga. Single objective optimization: 114 Variable(s) 114 Integer variable(s) 6 Linear equality constraint(s) 153 Options: CreationFcn: @gacreationuniformint CrossoverFcn: @crossoverlaplace SelectionFcn: @selectiontournament MutationFcn: @mutationpower Elapsed time is 40335.673792 seconds. Optimization terminated: average change in the penalty fitness value less than options.FunctionTolerance and constraint violation is less than options.ConstraintTolerance. solution = struct with fields: D12: [15 15 60 16 60] D21: [15 15 45 60 22] h122: [27×1 double] h124: [29×1 double] h212: [25×1 double] h214: [23×1 double] reasonSolverStopped = SolverConvergedSuccessfully objectiveValue = 6.8632e+04 154 D10. Data Optimasi Skema 10 Elapsed time is 5.017967 seconds. OptimizationProblem : Solve for: D12, D21, h121, h123, h125, h211, h213, h215 where: D12, D21, h121, h123, h125, h211, h213, h215 inte ger minimize : model(D12, D21, h121, h123, h125, h211, h213, h215) subject to constraint1: h121(1) + h121(2) + h121(3) + h121(4) + h121(5) + h121(6) + h121(7) + h121(8) + h121(9) + h121(10) + h 121(11) == 7140 subject to constraint2: h123(1) + h123(2) + h123(3) + h123(4) + h123(5) + h123(6) + h123(7) + h123(8) + h123(9) + h123(10) + h123(11) + h123(12) + h123(13) + h123(14) + h123(15) + h123(16) + h123(17) + h123(18) + h123(19) + h123(20 ) + h123(21) + h123(22) + h123(23) + h123(24) + h123(25) + h123(26) + h123(27) + h123(28) + h123(29) + h123(30) + h123(31) + h123(32) + h123(33) + h123(34) + h123(35) + h123(36) + h123(37) + h123(38) + h123(39) + h123(40) + h123(41) + h123(42) + h123(43) + h123(44) + h123(45) + h123(46) + h123 (47) + h123(48) + h123(49) + h123(50) + h123(51) == 24900 subject to constraint3: h125(1) + h125(2) + h125(3) + h125(4) + h125(5) + h125(6) + h125(7) + h125(8) + h125(9) + h125(10) + h125(11) + h125(12) + h125(13) + h125(14) + h125(15) + h12 5(16) + h125(17) + h125(18) + h125(19) + h125(20) + h125(21) + h125(22) + h125(23) + h125(24) + h125(25) + h125(26) + h125(27) + h125(28) + h125(29) + h125(30) + h125(31) == 18900 subject to constraint4: h211(1) + h211(2) + h211(3) + h211(4) + h211(5) + h211(6) + h211(7) + h211(8) + h211(9) + h211(10) + h211(11) + h211(12) + h211(13) + h211(14) + h211(15) + h211(16) == 7140 subject to constraint5: h213(1) + h213(2) + h213(3) + h213(4) + h213(5) + h213(6) + h213(7) + h213(8) + h213(9) + h213(10) + h213(11) + h213(12) + h213(13) + h213(14) + h213(15) + h213(16) + h213(17) + h213(18) + h213(19) + h213(20) + h213(21) + h213(22) + h213(23) + h213(24) + h213(25) + h213(26) + h213(27) + h213(28) + h213(29) + h213(30) + h213(31) + h213( 32) + h213(33) + h213(34) + h213(35) + h213(36) + h213(37) + h213(38) + h213(39) + h213(40) + h213(41) + h213(42) + h213(43) + h213(44) + h213(45) + h213(46) + h213(47) + h213(48) + h213(49) + h213(50) + h213(51) + h213(52) + h213(53) + h213(54) == 24840 155 subject to constraint6: h215(1) + h215(2) + h215(3) + h215(4) + h215(5) + h215(6) + h215(7) + h215(8) + h215(9) + h215(10) + h215(11) + h215(12) + h215(13) + h215(14) + h215(15) + h215(16) + h215(17) + h215(18) + h215(19) + h215(20) + h 215(21) + h215(22) + h215(23) + h215(24) + h215(25) + h215(26) + h215(27) + h215(28) + h215(29) + h215(30) + h215(31) == 17100 subject to constraint7: D12(1) + D12(2) + D12(3) + D12(4) + D12(5) == 166 subject to constraint8: D21(1) + D21(2) + D21(3) + D21(4) + D21(5) == 157 variable bounds: 15 <= D12(1) <= 60 15 <= D12(2) <= 60 15 <= D12(3) <= 60 15 <= D12(4) <= 60 15 <= D12(5) <= 60 15 <= D21(1) <= 60 15 <= D21(2) <= 60 15 <= D21(3) <= 60 15 <= D21(4) <= 60 15 <= D21(5) <= 60 360 <= h121(1) <= 1440 360 <= h121(2) <= 1440 360 <= h121(3) <= 1440 360 <= h121(4) <= 1440 360 <= h121(5) <= 1440 360 <= h121(6) <= 1440 360 <= h121(7) <= 1440 360 <= h121(8) <= 1440 360 <= h121(9) <= 1440 360 <= h121(10) <= 1440 360 <= h121(11) <= 1440 240 <= h123(1) <= 1320 240 <= h123(2) <= 1320 240 <= h123(3) <= 1320 240 <= h123(4) <= 1320 240 <= h123(5) <= 1320 240 <= h123(6) <= 1320 240 <= h123(7) <= 1320 240 <= h123(8) <= 1320 240 <= h123(9) <= 1320 240 <= h123(10) <= 1320 240 <= h123(11) <= 1320 240 <= h123(12) <= 1320 240 <= h123(13) <= 1320 240 <= h123(14) <= 1320 240 <= h123(15) <= 1320 240 <= h123(16) <= 13 20 240 <= h123(17) <= 1320 240 <= h123(18) <= 1320 156 240 <= h123(19) <= 1320 240 <= h123(20) <= 1320 240 <= h123(21) <= 1320 240 <= h123(22) <= 1320 240 <= h123(23) <= 1320 240 <= h123(24) <= 1320 240 <= h123(25) <= 1320 240 <= h123(26) <= 1320 240 <= h123(27) <= 1320 240 <= h123(28) <= 1320 240 <= h123(29) <= 1320 240 <= h123(30) <= 1320 240 <= h123(31) <= 1320 240 <= h123(32) <= 1320 240 <= h123(33) <= 1320 240 <= h123(34) <= 1320 240 <= h123(35) <= 1320 240 <= h123(36) <= 1320 240 <= h123(37) <= 1320 240 <= h123(38) <= 1320 240 <= h123(39) <= 1320 240 <= h123(40) <= 1320 240 <= h123(41) <= 1320 240 <= h123(42) <= 1320 240 <= h123(43) <= 1320 240 <= h123(44) <= 1320 240 <= h123(45) <= 1320 240 <= h123(46) <= 1320 240 <= h123(47) <= 1320 240 <= h123(48) <= 1320 240 <= h123(49) <= 1320 240 <= h123(50) <= 1320 240 <= h123(51) <= 1320 180 <= h125(1) <= 1860 180 <= h125(2) <= 1860 180 <= h125(3) <= 1860 180 <= h125(4) <= 1860 180 <= h125(5) <= 1860 180 <= h125(6) <= 1860 180 <= h125(7) <= 1860 180 <= h125(8) <= 1860 180 <= h125(9) <= 1860 180 <= h125(10) <= 1860 180 <= h125(11) <= 18 60 180 <= h125(12) <= 1860 180 <= h125(13) <= 1860 180 <= h125(14) <= 1860 180 <= h125(15) <= 1860 180 <= h125(16) <= 1860 180 <= h125(17) <= 1860 180 <= h125(18) <= 1860 180 <= h125(19) <= 1860 180 <= h125(20) <= 1860 180 <= h125(21) <= 1860 180 <= h125(22) <= 1860 180 <= h125(23) <= 1860 180 <= h125(24) <= 1860 180 <= h125(25) <= 1860 157 180 <= h125(26) <= 1860 180 <= h125(27) <= 1860 180 <= h125(28) <= 1860 180 <= h125(29) <= 1860 180 <= h125(30) <= 1860 180 <= h125(31) <= 1860 300 <= h211(1) <= 780 300 <= h211(2) <= 780 300 <= h211(3) <= 780 300 <= h211(4) <= 780 300 <= h211(5) <= 780 300 <= h211(6) <= 780 300 <= h211(7) <= 780 300 <= h211(8) <= 780 300 <= h211(9) <= 780 300 <= h211(10) <= 780 300 <= h211(11) <= 780 300 <= h211(12) <= 780 300 <= h211(13) <= 780 300 <= h211(14) <= 780 300 <= h211(15) <= 780 300 <= h211(16) <= 780 300 <= h213(1) <= 1140 300 <= h213(2) <= 1140 300 <= h213(3) <= 1140 300 <= h213(4) <= 1140 300 <= h213(5) <= 1140 300 <= h213(6) <= 1140 300 <= h213(7) <= 1140 300 <= h213(8) <= 1140 300 <= h213(9) <= 1140 300 <= h213(10) <= 1140 300 <= h213(11) <= 1140 300 <= h213(12) <= 1140 300 <= h213(13) <= 1140 300 <= h213(14) <= 1140 300 <= h213(15) <= 1140 300 <= h213(16) <= 1140 300 <= h213(17) <= 1140 300 <= h213(18) <= 1140 300 <= h213(19) <= 1140 300 <= h213(20) <= 11 40 300 <= h213(21) <= 1140 300 <= h213(22) <= 1140 300 <= h213(23) <= 1140 300 <= h213(24) <= 1140 300 <= h213(25) <= 1140 300 <= h213(26) <= 1140 300 <= h213(27) <= 1140 300 <= h213(28) <= 1140 300 <= h213(29) <= 1140 300 <= h213(30) <= 1140 300 <= h213(31) <= 1140 300 <= h213(32) <= 1140 300 <= h213(33) <= 1140 300 <= h213(34) <= 1140 300 <= h213(35) <= 1140 158 300 <= h213(36) <= 1140 300 <= h213(37) <= 1140 300 <= h213(38) <= 1140 300 <= h213(39) <= 1140 300 <= h213(40) <= 1140 300 <= h213(41) <= 1140 300 <= h213(42) <= 1140 300 <= h213(43) <= 1140 300 <= h213(44) <= 1140 300 <= h213(45) <= 1140 300 <= h213(46) <= 1140 300 <= h213(47) <= 1140 300 <= h213(48) <= 1140 300 <= h213(49) <= 1140 300 <= h213(50) <= 1140 300 <= h213(51) <= 1140 300 <= h213(52) <= 1140 300 <= h213(53) <= 1140 300 <= h213(54) <= 1140 300 <= h215(1) <= 1560 300 <= h215(2) <= 1560 300 <= h215(3) <= 1560 300 <= h215(4) <= 1560 300 <= h215(5) <= 1560 300 <= h215(6) <= 1560 300 <= h215(7) <= 1560 300 <= h215(8) <= 1560 300 <= h215(9) <= 1560 300 <= h215(10) <= 1560 300 <= h215(11) <= 1560 300 <= h215(12) <= 15 60 300 <= h215(13) <= 1560 300 <= h215(14) <= 1560 300 <= h215(15) <= 1560 300 <= h215(16) <= 1560 300 <= h215(17) <= 1560 300 <= h215(18) <= 1560 300 <= h215(19) <= 1560 300 <= h215(20) <= 1560 300 <= h215(21) <= 1560 300 <= h215(22) <= 1560 300 <= h215(23) <= 1560 300 <= h215(24) <= 1560 300 <= h215(25) <= 1560 300 <= h215(26) <= 1560 300 <= h215(27) <= 1560 300 <= h215(28) <= 1560 300 <= h215(29) <= 1560 300 <= h215(30) <= 1560 300 <= h215(31) <= 1560 Solving problem using ga. Single objective optimization: 204 Variable(s) 204 Integer variable(s) 8 Linear equality constraint(s) Options: 159 CreationFcn: @gacreationuniformint CrossoverFcn: @crossoverlaplace SelectionFcn: @selectiontournament MutationFcn: @mutationpower Elapsed time is 115636.767073 seconds. Optimization terminated: average change in the penalty fitness value less than options.FunctionTolerance and constraint violation is less than options.ConstraintToleran ce. solution = struct with fields: D12: [15 15 16 60 60] D21: [15 25 39 60 18] h121: [11×1 double] h123: [51×1 double] h125: [31×1 double] h211: [16×1 double] h213: [54×1 double] h215: [31×1 double] reasonSolverStopped = SolverConvergedSuccessfully objectiveValue = 6.7260e+04 160 Lampiran E Data Aktual (Baseline) dan Solusi Skema Optimasi E1. Data Aktual (Baseline) 1. D12 = [17 15 19 98 17]; 2. D21 = [26 70 24 16 21]; 3. h12 = [600;900;660;360;360;1440;780;600;480;420;540;300;300;720;300;360;720; 360;300;420;360;360;420;720;300;360;360;360;420;240;480;300;780;360;30 0;300;300;300;420;540;240;300;420;480;840;300;420;240;300;420;900;420;3 00;300;360;360;360;240;1320;240;300;720;360;720;420;480;420;420;1020;6 00;720;360;540;360;360;660;300;660;240;780;780;420;300;360;960;420;360; 840;300;360;240;300;300;300;300;300;360;480;600;360;420;480;420;300;30 0;300;420;240;300;360;420;300;780;360;360;540;420;540;360;660;360;360;4 80;420;660;300;1080;180;600;1380;300;300;300;420;360;360;420;420;960;2 40;840;420;300;1200;300;1860;1500;840;720]; 4. h21 = [300;780;360;300;300;420;360;600;300;780;300;540;720;420;300;360;300;3 00;300;420;420;300;360;420;540;420;300;480;480;420;420;360;780;480;300; 360;360;360;720;540;600;420;420;360;300;360;840;360;420;360;420;300;42 0;300;1140;420;300;360;360;300;360;300;840;360;300;420;720;360;660;480; 480;600;540;360;600;960;300;360;1080;360;360;360;360;780;360;540;300;3 00;780;300;300;480;300;300;420;420;900;420;540;540;360;300;540;360;300; 360;600;300;360;300;540;660;300;480;480;360;420;360;1020;420;540;300;3 60;540;480;300;720;600;300;720;420;360;300;720;480;360;300;660;300;660; 480;360;480;660;540;1560;780;360;1020]; E2. Solusi Skema 1 1. D12 = [33,47,36,55,56]; 2. D21 = [15,40,40,60,34]; E3. Solusi Skema 2 1. D12 = [33,58,60,16,59]; 2. D21 = [15,22,60,39,57]; E4. Solusi Skema 3 1. h12 = [180;180;180;180;1668;180;337;1853;180;180;180;1676;180;180;1744;1860; 180;410;1841;203;180;1860;182;180;220;180;180;1798;253;180;180;1860;18 0;180;180;180;180;290;180;180;251;180;1672;180;180;180;180;180;194;261; 180;360;1836;180;180;180;180;180;226;180;278;180;216;209;1710;180;180; 180;180;1418;180;180;214;1606;180;250;180;180;1807;180;1834;219;180;25 3;350;180;1826;180;180;180;211;1733;255;180;180;424;180;1815;180;180;1 80;238;180;180;275;180;180;1860;180;1841;180;180;180;180;1841;180;180; 180;180;180;180;1605;216;258;180;386;180;180;188;1773;180;180;399;190; 180;180;180;273;180;325;180;180;1742;180;1692;180;1666;180;819]; 161 E5. Solusi Skema 4 1. h21 = [300;300;300;300;640;300;1208;1261;300;300;300;300;300;300;674;981;300 ;1506;300;632;300;1138;711;300;1363;300;300;300;561;300;300;300;300;30 0;300;300;300;1102;300;300;300;300;992;300;300;300;300;300;446;774;300; 1013;1196;300;300;300;300;300;1183;300;412;300;1154;1203;300;300;300;3 00;300;1374;300;300;300;300;300;1239;300;300;300;300;723;1012;300;300; 300;300;580;300;300;300;897;435;300;300;300;300;300;300;300;300;300;80 8;300;300;1185;300;300;370;300;1468;300;300;300;300;300;300;300;300;30 0;300;300;1422;300;300;300;300;300;300;310;1297;300;300;300;430;300;30 0;300;946;300;1032;1526;300;1095;300;1182;300;1289;300;300]; E6. Solusi Skema 5 1. h12 = [180;180;1860;180;1803;200;1795;272;180;193;180;184;180;180;1835;336;1 80;196;203;1845;180;249;180;180;1860;180;1609;224;1774;1840;180;231;18 0;180;180;180;180;255;180;180;180;180;180;214;180;199;180;190;180;1446; 180;180;180;180;180;180;180;180;180;219;1860;1831;180;183;250;180;1811 ;180;180;197;1847;180;200;180;180;1857;1851;1828;180;180;1819;1041;180 ;180;180;732;180;207;180;1842;180;180;222;180;180;180;180;202;180;180;2 61;1545;180;180;180;180;180;1308;180;180;180;225;180;180;1831;1155;180 ;180;180;180;180;1840;1833;180;180;200;421;180;180;180;267;180;180;180; 180;180;180;180;180;180;180;180;913;180;1838;180;1837;180;223]; 2. h21 = [180;180;527;1842;180;752;180;180;180;180;180;1818;180;180;1612;180;18 0;180;180;180;180;180;180;1820;180;1182;180;180;180;1825;258;1839;1796 ;1101;180;180;180;219;239;1836;180;180;180;180;1810;180;180;204;180;18 0;190;180;180;180;1685;180;234;180;180;180;1824;1543;180;180;180;1815; 180;180;180;180;1850;220;180;180;180;180;180;180;180;180;180;180;1820; 180;180;1799;180;180;209;1814;180;180;1854;233;180;180;180;180;180;180 ;180;180;180;1818;180;180;180;1132;180;180;200;180;180;180;180;180;180; 180;1813;1854;180;180;192;180;1769;180;210;1809;180;180;180;222;1841;1 80;198;207;180;180;180;180;180;180;218;1816;180;180;180;1478;180]; E7. Solusi Skema 6 1. D12 = [15,15,15,15,15]; 2. D21 = [15,15,15,15,15]; 3. h12 = [180;180;180;180;180;180;180;180;180;180;180;180;180;180;1860;180;180; 180;180;180;180;1860;180;180;180;180;180;1860;180;180;180;180;180;628; 180;180;180;180;1860;180;180;180;180;180;180;180;180;180;180;180;1860; 1860;180;180;1860;180;180;180;180;1860;180;180;1860;180;180;180;1860;1 80;180;180;180;1860;180;180;180;180;180;180;180;180;180;180;180;180;18 0;180;180;180;180;180;1860;180;180;180;180;180;180;1860;180;1840;180;1 80;180;180;1860;180;180;1860;1860;180;180;1714;1860;180;180;180;180;18 0;1860;180;180;180;180;180;180;180;180;180;180;180;180;180;180;180;186 0;180;1860;180;1860;1860;180;180;1860;180;1860;180;641;180;1860]; 162 4. h21 = [180;180;180;180;180;180;1860;180;1860;180;180;180;180;180;180;180;180 ;180;180;180;180;1860;1860;180;180;180;180;180;180;180;180;1860;180;18 0;180;180;180;180;180;180;180;180;180;180;1860;180;1860;180;180;180;18 0;1860;180;180;180;180;180;180;180;180;1860;180;180;180;180;180;180;18 60;180;180;180;180;180;180;180;1860;180;1860;1860;816;180;180;1860;180 ;185;180;180;180;180;180;180;1860;180;1860;180;1860;1860;1860;180;180; 180;1860;180;180;180;180;180;180;1860;232;1860;180;180;180;180;180;180 ;1860;180;180;180;180;180;180;180;1860;1860;180;1860;180;180;180;180;1 80;180;180;180;1860;180;180;180;180;180;180;180;180;180;180;180]; E8. Solusi Skema 7 1. D12 = [15,15,25,46,60]; 2. D21 = [60,15,31,15,31]; 3. h12 = [180;337;180;180;263;347;1860;1783;1857;1726;180;227;180;180;180;180;1 80;1826;321;1834;180;1788;180;1770;180;180;180;181;180;180;180;180;180 ;180;180;180;180;1856;180;286;180;232;180;180;348;180;272;180;180;1775; 1809;180;180;367;1850;180;1775;180;180;180;1822;180;180;180;180;1817;1 80;1849;180;180;224;1812;181;180;180;180;180;1806;180;406;180;180;274; 180;180;180;180;180;180;180;180;327;180;180;251;259;1735;1759;180;180; 180;180;180;180;180;397;180;180;180;180;180;180;249;180;180;180;180;18 0;180;180;180;1841;180;180;180;180;180;180;180;180;180;180;1703;180;17 12;180;246;180;197;1801;1756;1802;312;180;1856;180;180;180;180]; 4. h21 = [180;180;320;180;246;180;180;180;180;1422;285;180;180;309;180;180;243; 1836;180;232;1770;263;205;180;187;180;180;1655;1621;180;180;180;180;18 0;1774;1818;180;180;180;180;180;180;180;180;324;180;180;1835;180;1627; 203;239;180;1762;180;1795;180;180;1769;180;180;247;1815;180;180;180;18 26;180;180;180;180;180;219;180;180;1859;180;180;180;180;180;180;180;18 0;180;180;180;180;180;180;1464;180;180;1814;180;180;180;201;180;180;18 0;1555;1774;180;333;180;311;1597;1346;209;180;180;208;180;229;1306;180 ;180;180;180;1761;278;1851;180;1784;180;180;180;1799;180;180;180;180;2 41;180;180;180;180;182;1676;1860;180;185;180;180;261;180;1860;180]; E9. Solusi Skema 8 1. D12 = [15,15,26,50,60]; 2. D21 = [60,40,27,15,15]; 3. h12 = [180;1580;180;180;1788;1799;211;337;1787;1846;180;1860;188;180;180;180 ;180;219;1760;1765;180;1846;180;1834;180;180;180;1824;180;180;180;180; 180;180;180;180;180;1590;180;1791;180;180;180;180;1810;180;186;180;180 ;214;1860;180;180;180;1762;180;388;180;180;180;186;180;180;180;180;159 7;180;1604;180;180;1860;236;273;180;180;180;1816;192;180;391;180;180;1 768;180;180;231;180;180;180;180;180;204;180;180;184;1489;184;1860;180; 180;180;180;180;180;180;1659;180;180;180;180;180;180;464;180;180;180;1 80;180;200;180;180;421;180;180;180;180;180;180;180;180;180;180;291;180; 1538;180;341;180;1860;400;485;475;1500;180;1486;180;180;180;180]; 163 4. h21 = [180;180;1788;180;211;180;180;180;180;229;1847;180;180;1712;180;180;17 75;200;180;1718;253;188;1655;180;205;180;180;1764;1778;180;180;180;180 ;180;1717;1824;180;180;180;180;180;180;180;180;180;180;180;251;180;229; 180;1860;180;180;180;180;180;180;1806;180;180;260;219;180;180;180;1736 ;180;180;180;180;180;1213;180;180;214;180;180;180;180;180;180;180;180;1 80;180;180;180;180;180;210;180;180;180;180;180;180;180;180;180;180;155 4;1855;180;1814;180;1082;180;180;1722;180;180;1739;180;1742;1803;180;1 80;180;180;1814;1643;1648;180;192;180;180;180;180;180;180;180;180;657; 180;180;180;180;1757;1853;1835;180;635;180;180;491;180;1482;180]; E10. Solusi Skema 9 1. D12 = [15,15,60,16,60]; 2. D21 = [15,15,45,60,22]; 3. h12 = [600;900;660;360;360;1440;780;600;480;420;540;240;665;240;240;692;240; 780;269;240;240;240;780;414;240;780;240;240;240;780;780;240;780;240;24 0;240;240;240;420;540;240;300;420;480;840;300;420;240;300;420;900;420;3 00;300;360;360;360;240;1320;240;300;720;360;720;420;480;420;420;1020;6 00;720;360;540;360;360;660;300;660;240;780;780;420;300;360;960;420;360; 840;300;780;240;240;240;240;240;721;240;257;240;629;780;240;240;240;24 0;240;362;240;240;240;240;780;780;240;240;780;731;240;360;660;360;360;4 80;420;660;300;1080;180;600;1380;300;300;300;420;360;360;420;420;960;2 40;840;420;300;1200;300;1860;1500;840;720]; 4. h21 = [300;780;360;300;300;420;360;600;300;780;300;540;720;420;300;360;300;3 00;300;300;780;300;300;300;300;780;300;306;300;300;300;780;300;619;300; 300;780;780;780;335;300;420;420;360;300;360;840;360;420;360;420;300;42 0;300;1140;420;300;360;360;300;360;300;840;360;300;420;720;360;660;480; 480;600;540;360;600;960;300;360;1080;360;360;360;360;780;360;540;300;3 00;780;300;300;480;300;300;420;300;315;639;300;300;300;300;300;300;300; 900;300;300;900;300;300;466;300;300;900;300;736;844;1020;420;540;300;3 60;540;480;300;720;600;300;720;420;360;300;720;480;360;300;660;300;660; 480;360;480;660;540;1560;780;360;1020]; E11. Solusi Skema 10 1. D12 = [15,15,16,60,60]; 2. D21 = [15,25,39,60,18]; 3. h12 = [360;360;360;360;1366;431;360;659;360;1440;1084;300;300;720;300;360;72 0;360;300;420;360;360;420;720;300;360;360;360;420;240;480;300;780;360;3 00;300;300;300;1295;1320;1320;1320;240;240;1320;1315;240;240;240;240;2 40;240;240;240;1320;240;240;240;240;506;1320;240;240;240;240;240;1320; 240;240;240;240;240;240;240;240;1241;240;1320;240;240;319;240;240;240; 240;240;784;240;240;360;240;300;300;300;300;300;360;480;600;360;420;48 0;420;300;300;300;420;240;300;360;420;300;780;360;360;540;420;540;413;1 80;180;1659;180;180;1653;180;180;180;1860;180;180;1860;1860;180;180;18 23;180;1377;755;180;180;180;180;180;180;180;180;1860;180]; 164 4. h21 = [300;300;300;300;780;300;502;300;300;780;300;780;300;300;780;518;300;3 00;300;420;420;300;360;420;540;420;300;480;480;420;420;360;780;480;300; 360;360;360;720;540;600;300;300;633;1140;300;300;1021;300;300;300;300; 300;1140;1140;300;300;300;300;300;300;300;300;300;1140;300;1066;300;11 40;300;300;695;300;300;300;300;845;300;300;300;1140;300;1140;300;300;3 00;300;300;300;300;300;300;300;300;300;420;900;420;540;540;360;300;540; 360;300;360;600;300;360;300;540;660;300;480;480;360;420;360;300;300;30 0;300;300;1560;300;1560;330;300;300;300;300;307;878;300;300;310;300;30 0;312;1560;1163;300;300;300;1560;300;300;300;1560]; E12. Solusi Skema 11 1. D12 = [15,15,60,16,60]; 2. D21 = [15,15,45,60,22]; 3. h12 = [360;360;360;360;1366;431;360;659;360;1440;1084;240;665;240;240;692;24 0;780;269;240;240;240;780;414;240;780;240;240;240;780;780;240;780;240;2 40;240;240;240;1295;1320;1320;1320;240;240;1320;1315;240;240;240;240;2 40;240;240;240;1320;240;240;240;240;506;1320;240;240;240;240;240;1320; 240;240;240;240;240;240;240;240;1241;240;1320;240;240;319;240;240;240; 240;240;784;240;240;780;240;240;240;240;240;721;240;257;240;629;780;24 0;240;240;240;240;362;240;240;240;240;780;780;240;240;780;731;240;413;1 80;180;1659;180;180;1653;180;180;180;1860;180;180;1860;1860;180;180;18 23;180;1377;755;180;180;180;180;180;180;180;180;1860;180]; 4. h21 = [300;300;300;300;780;300;502;300;300;780;300;780;300;300;780;518;300;3 00;300;300;780;300;300;300;300;780;300;306;300;300;300;780;300;619;300; 300;780;780;780;335;300;300;300;633;1140;300;300;1021;300;300;300;300; 300;1140;1140;300;300;300;300;300;300;300;300;300;1140;300;1066;300;11 40;300;300;695;300;300;300;300;845;300;300;300;1140;300;1140;300;300;3 00;300;300;300;300;300;300;300;300;300;300;315;639;300;300;300;300;300; 300;300;900;300;300;900;300;300;466;300;300;900;300;736;844;300;300;30 0;300;300;1560;300;1560;330;300;300;300;300;307;878;300;300;310;300;30 0;312;1560;1163;300;300;300;1560;300;300;300;1560];.