Hasil Ringkasan
Citra Deliana Dewi Sundari

Jumlah halaman: 17 · Jumlah kalimat ringkasan: 50

123 DAFTAR PUSTAKA Abbaz, T., Bendjeddou, A., & Villemin, D. (2019). Density Functional Theory Studies On Molecular Structure And Electronic Properties Of sulfanilamide, Sulfathiazole, E7070 And Furosemide Molecules. IOSR Journal of Applied Chemistry, 12(1), 60–69. Abraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., & Lindahl, E. (2015). GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 1–2, 19–25. https://doi.org/10.1016/j.softx.2015.06.001 Ahmad, F., Khalid, M., & Panigrahi, B. K. (2021). Development in energy storage system for electric transportation: A comprehensive review. Journal of Energy Storage, 43, 103153. https://doi.org/10.1016/j.est.2021.103153 Ai, S., Wang, T., Li, T., Wan, Y., Xu, X., Lu, H., Qu, T., Luo, S., Jiang, J., Yu, X., Zhou, D., & Li, L. (2020). A Chitosan/Poly(ethylene oxide)-Based Hybrid Polymer Composite Electrolyte Suitable for Solid-State Lithium Metal Batteries. ChemistrySelect, 5(10), 2878–2885. Scopus. https://doi.org/10.1002/slct.202000260 Ali, M., Mansha, A., Asim, S., Zahid, M., Usman, M., & Ali, N. (2018). DFT Study for the Spectroscopic and Structural Analysis of p- Dimethylaminoazobenzene. Journal of Spectroscopy, 2018, 1–15. https://doi.org/10.1155/2018/9365153 An, N. T., Thien, D. T., Dong, N. T., & Dung, P. L. (2009). Water-soluble N- carboxymethylchitosan derivatives: Preparation, characteristics and its application. Carbohydrate Polymers, 75(3), 489–497. https://doi.org/10.1016/j.carbpol.2008.08.017 Appetecchi, G. B., Montanino, M., & Passerini, S. (2012). Ionic Liquid-Based Electrolytes for High Energy, Safer Lithium Batteries. Dalam A. E. Visser, N. J. Bridges, & R. D. Rogers (Ed.), ACS Symposium Series (Vol. 1117, hlm. 67–128). American Chemical Society. https://doi.org/10.1021/bk- 2012-1117.ch004 Armand, M., & Tarascon, J.-M. (2008). Building better batteries. Nature, 451(7179), 652–657. https://doi.org/10.1038/451652a Arof, A. K., Osman, Z., Morni, N. M., Kamarulzaman, N., Ibrahim, Z. A., & Muhamad, M. R. (2001). Chitosan-based electrolyte for secondary lithium cells. 2001(2001), 3. Barbosa, J. C., Gonçalves, R., Costa, C. M., & Lanceros-Méndez, S. (2022). Toward Sustainable Solid Polymer Electrolytes for Lithium-Ion Batteries. ACS Omega , 7(17), 14457 –14464. https://doi.org/10.1021/acsomega.2c01926 Barghamadi, M., Best, A. S., Bhatt, A. I., Hollenkamp, A. F., Mahon, P. J., Musameh, M., & Rüther, T. (2015). Effect of LiNO3 additive and 124 pyrrolidinium ionic liquid on the solid electrolyte interphase in the lithium–sulfur battery. Journal of Power Sources, 295, 212–220. https://doi.org/10.1016/j.jpowsour.2015.06.150 Bonhote, P., Dias, A.-P., Papageorgiou, N., Kalyanasundaram, K., & Gra, M. (t.t.). Hydrophobic, Highly Conductive Ambient-Temperature Molten Salts. 1996, 35, 1168–1178. Borodin, O., Giffin, G. A., Moretti, A., Haskins, J. B., Lawson, J. W., Henderson, W. A., & Passerini, S. (2018). Insights into the Structure and Transport of the Lithium, Sodium, Magnesium, and Zinc Bis(trifluoromethansulfonyl)imide Salts in Ionic Liquids. The Journal of Physical Chemistry C , 122(35), 20108 –20121. https://doi.org/10.1021/acs.jpcc.8b05573 Brandman, R., Brandman, Y., & Pande, V. S. (2012). A-Site Residues Move Independently from P-Site Residues in all-Atom Molecular Dynamics Simulations of the 70S Bacterial Ribosome. PLOS ONE, 7(1), e29377. https://doi.org/10.1371/journal.pone.0029377 Brooks, D. J., Merinov, B. V., Goddard, W. A., Kozinsky, B., & Mailoa, J. (2018). Atomistic Description of Ionic Diffusion in PEO–LiTFSI: Effect of Temperature, Molecular Weight, and Ionic Concentration. Macromolecules, 51(21), 8987 –8995. https://doi.org/10.1021/acs.macromol.8b01753 Chemcraft—Graphical software for visualization of quantum chemistry computations. Https://www.chemcraftprog.com. (t.t.). Chen, F., Wang, X., Armand, M., & Forsyth, M.