Hasil Ringkasan
PUSTAKA Novi Andria

Jumlah halaman: 32 · Jumlah kalimat ringkasan: 50

189 REFERENCES Allen, J. J., and Smits, A. J. (2001): Energy harvesting eel, Journal of Fluids and Structures, 15(3), 629–640. https://doi.org/10.1006/jfls.2000.0355 Alsafadie, R., Hjiaj, M., and Battini, J. M. (2011): Three-dimensional formulation of a mixed corotational thin-walled beam element incorporating shear and warping deformation, Thin-Walled Structures, 49(4), 523–533. https://doi.org/10.1016/j.tws.2010.12.002 Angot, P., Bruneau, C.-H., and Fabrie, P. (1999): A penalization method to take into account obstacles in incompressible viscous flows, Numerische Mathematik, 81(4), 497–520. https://doi.org/10.1007/s002110050401 Argyris, J. H., Balmer, H., Doltsinis, J. S., Dunne, P. C., Haase, M., Kleiber, M., Malejannakis, G. A., Mlejnek, H. P., Müller, M., and Scharpf, D. W. (1979): Finite element method - the natural approach, Computer Methods in Applied Mechanics and Engineering, 17–18(PART 1), 1–106. https://doi.org/10.1016/0045-7825(79)90083-5 Baek, H., and Karniadakis, G. E. (2012): A convergence study of a new partitioned fluid–structure interaction algorithm based on fictitious mass and damping, Journal of Computational Physics, 231(2), 629–652. https://doi.org/10.1016/j.jcp.2011.09.025 Balty, P., Caprace, D.-G., Waucquez, J., Coquelet, M., and Chatelain, P. (2020): Multiphysics simulations of the dynamic and wakes of a floating Vertical Axis Wind Turbine, Journal of Physics: Conference Series, 1618(6), 062053. https://doi.org/10.1088/1742-6596/1618/6/062053 Banks, J. W., Henshaw, W. D., and Schwendeman, D. W. (2014a): An analysis of a new stable partitioned algorithm for FSI problems. Part I: Incompressible flow and elastic solids, Journal of Computational Physics, 269, 108–137. https://doi.org/10.1016/j.jcp.2014.03.006 Banks, J. W., Henshaw, W. D., and Schwendeman, D. W. (2014b): An analysis of a new stable partitioned algorithm for FSI problems. Part II: Incompressible flow and structural shells, Journal of Computational Physics, 268, 399–416. https://doi.org/10.1016/j.jcp.2014.03.004 Barnes, J., and Hut, P. (1986): A hierarchical O(N log N) force-calculation algorithm, Nature, 324(6096), 446–449. https://doi.org/10.1038/324446a0 Battini, J. M. (2008): Large rotations and nodal moments in corotational elements, CMES - Computer Modeling in Engineering and Sciences, 33(1), 1–15. Battini, J. M. (2007): A modified corotational framework for triangular shell elements, Computer Methods in Applied Mechanics and Engineering, 196(13–16), 1905–1914. https://doi.org/10.1016/j.cma.2006.10.006 Battini, J. M., and Pacoste, C. (2002): Co-rotational beam elements with warping effects in instability problems, Computer Methods in Applied Mechanics and Engineering, 191(17–18), 1755–1789. https://doi.org/10.1016/S0045- 7825(01)00352-8 Bendiksen, K. H., Maines, D., Moe, R., and Nuland, S. (1991): The dynamic two- fluid model OLGA; Theory and application, SPE (Society of Petroleum Engineers) Production Engineering; (United States), 6:2. https://doi.org/10.2118/19451-PA 190 Bergdorf, M., Cottet, G.-H., and Koumoutsakos, P. (2005): Multilevel Adaptive Particle Methods for Convection-Diffusion Equations, Multiscale Modeling & Simulation, 4(1), 328–357. https://doi.org/10.1137/040602882 Bergdorf, M., and Koumoutsakos, P. (2006): A Lagrangian Particle‐Wavelet Method, Multiscale Modeling & Simulation, 5(3), 980–995. https://doi.org/10.1137/060652877 Bergmann, M., and Iollo, A. (2011): Modeling and simulation of fish-like swimming, Journal of Computational Physics, 230(2), 329–348. https://doi.org/10.1016/j.jcp.2010.09.017 Bernier, C., Gazzola, M., Ronsse, R., and Chatelain, P. (2019): Simulations of propelling and energy harvesting articulated bodies via vortex particle-mesh methods, Journal of Computational Physics, 392, 34–55. https://doi.org/10.1016/j.jcp.2019.04.036 Blom, F. J. (1998): A monolithical fluid-structure interaction algorithm applied to the piston problem, Computer Methods in Applied Mechanics and Engineering, 167(3), 369–391. https://doi.org/10.1016/S0045-7825(98)00151-0 Brank, B., Korelc, J., and Ibrahimbegović, A. (2003): Dynamics and time-stepping schemes for elastic shells undergoing finite rotations, Computers and Structures, 81(12), 1193–1210. https://doi.org/10.1016/S0045-7949(03)00036-1 Brücker, C., and Weidner, C. (2014): Influence of self-adaptive hairy flaps on the stall delay of an airfoil in ramp-up motion, Journal of Fluids and Structures, 47, 31–40. https://doi.org/10.1016/j.jfluidstructs.2014.02.014 Caltagirone, J. P. (1994): Sur l’intéraction fluide-milieu poreux ; application au calcul des efforts exercés sur un obstacle par un fluide visqueux. Canh, C. X. (2019): Improved vortex method by using brinkman penalization and accelerated schemes, Ph.D. Dissertation, Institut Teknologi Bandung, Bandung, Indonesia. Caprace, D. G., Chatelain, P., and Winckelmans, G. (2020a): Wakes of rotorcraft in advancing flight: A large-eddy simulation study, Physics of Fluids, 32(8), 087107. https://doi.org/10.1063/5.0015162 Caprace, D. G., Winckelmans, G., and Chatelain, P. (2020b): An immersed lifting and dragging line model for the vortex particle-mesh method, Theoretical and Computational Fluid Dynamics, 34(1), 21 –48. https://doi.org/10.1007/s00162-019-00510-1 Carrier, J., Greengard, L., and Rokhlin, V. (1988): A Fast Adaptive Multipole Algorithm for Particle Simulations, SIAM Journal on Scientific and Statistical Computing, 9(4), 669–686. https://doi.org/10.1137/0909044 Causin, P., Gerbeau, J. F., and Nobile, F. (2005): Added-mass effect in the design of partitioned algorithms for fluid–structure problems, Computer Methods in Applied Mechanics and Engineering, 194(42), 4506–4527. https://doi.org/10.1016/j.cma.2004.12.005 Češarek, P., Saje, M., and Zupan, D. (2013): Dynamics of flexible beams: Finite- element formulation based on interpolation of strain measures, Finite Elements in Analysis and Design, 72, 47–63. https://doi.org/10.1016/j.finel.2013.04.001 191 Chatelain, P., Duponcheel, M., Caprace, D.-G., Marichal, Y., and Winckelmans, G. (2017): Vortex particle-mesh simulations of vertical axis wind turbine flows: from the airfoil performance to the very far wake, Wind Energy Science, 2(1), 317–328. https://doi.org/10.5194/wes-2-317-2017 Chatelain, P., Curioni, A., Bergdorf, M., Rossinelli, D., Andreoni, W., and Koumoutsakos, P. (2008): Billion vortex particle direct numerical simulations of aircraft wakes, Computer Methods in Applied Mechanics and Engineering, 197(13), 1296–1304. https://doi.org/10.1016/j.cma.2007.11.016 Chawdhury, S., and Morgenthal, G. (2019): A partitioned solver to simulate large- displacement fluid–structure interaction of thin plate systems for vibration energy harvesting, Computers & Structures, 224, 106110. https://doi.org/10.1016/j.compstruc.2019.106110 Chawdhury, S., and Morgenthal, G. (2021): An extension of pseudo-3D vortex particle methods for aeroelastic interactions of thin-walled structures, Journal of Wind Engineering and Industrial Aerodynamics, 208, 104391. https://doi.org/10.1016/j.jweia.2020.104391 Chhang, S., Battini, J. M., and Hjiaj, M. (2017a): Energy-momentum method for co-rotational plane beams: A comparative study of shear flexible formulations, Finite Elements in Analysis and Design, 134(April), 41–54. https://doi.org/10.1016/j.finel.2017.04.001 Chhang, S., Sansour, C., Hjiaj, M., and Battini, J. M. (2017b): An energy- momentum co-rotational formulation for nonlinear dynamics of planar beams, Computers and Structures, 187, 50–63. https://doi.org/10.1016/j.compstruc.2017.03.021 Choi, J. I., Oberoi, R. C., Edwards, J.