xvii Referensi Abbasi, N. M. (2020, June). Basic Matlab implementation of the Simplex matrix algorithm. Retrieved July 14, 2022, from Mathworks: https://www.12000.org/my_notes/simplex/index.htm Ariyanto, J., Sasongko, R. A., & Moelyadi, M. A. (2022). Pemodelan Matematik dan Linierisasi HALE UAV ITB Skala 1:2 Arah Longitudinal. Master Minor Research, Institut Teknologi Bandung, Bandung. Bernstein, A. A., & S., D. (2022). Adaptive Energy Control of Longitudinal Aircraft Dynamics. American Institute of Aeronautics and Astronautics, 1- 12. Bittar, A., & Oliveira, N. M. (2013). Hardware-In-the-Loop Simulation of an Attitude Control with Switching Actuators for SUAV. International Conference of Unmanned Aircraft Systems (pp. 134-142). Atlanta: IEEE. Brigido-Gonzalez, J., & Rodriguez-Cortes, H. (2015). Experimental Validation of an Adaptive Total Energy Control System Strategy for the Longitudinal Dynamics of a FIxed-Wing Aircraft. Journal of Aerospace Engineering, 1- 11. Brown, A., & Anderson, D. (2019). Trajectory Optimization for High-Altitude Long-Endurance UAV Maritime Radar Surveillance. IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEM, 56 (3), 2406-2421. Christin, P. R., Poekoel, V. C., & Litouw, J. (2018). Implementasi Pengendali PID Untuk Kestabilan Posisi Terbang Wahana Tanpa Awak. Jurnal Teknik Elektro dan Komputer, 7(1), 53-62. Cook, M. V. (2007). Flight Dynamics Principles - A Linear Systems Approach to Aircraft Stability and Control -, Second Edition. Burlington, USA: Elsevier Ltd. E., I. L., & Moelyadi, M. A. (2018). Longitudinal Static Stability and wake visualization of high altitude long endurance aircraft developed in Bandung institute of technology. Journal of Physics, 1-7. Homainejad, N., & Rizos, C. (2015). Application Of Multiple Categories Of Unmanned Aircraft Systems (UAS) In Different Airspaces For Bushfire Monitoring And Response. International Conference on Unmanned Aerial Vehicles in Geomatics (pp. 55-60). Toronto: The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Isserman, R., Schaffnit, J., & Sinsel, S. (1998). Hardware-in-the-loop simulation for the design and testing of engine-control systems. Control Engineering Practice 7, 643-653. xviii Kamali, C., & Jain, S. (2016). Hardware In the Loop Simulation for a Mini UAV. International Federation of Automatic Control (pp. 700-705). Karnataka: Elsevier. Kang, D., Kim, S., & Jung, D. (2019). Real-time Validation of Formation Control for Fixed-wing UAVs using Multi Hardware-in-the-Loop Simulation. International Conference on Control and Automation (pp. 590-595). Scotlant: IEEE. Katz, J., & Plotkin, A. (2001). Low-Speed Aerodynamics (2nd ed.). Cambridge: Cambridge University Press. Lai, Y.-C., & Ting, W. O. (2016). Design and Implementation of an Optimal Energy Control System for Fixed-Wing Unmanned Aerial Vehicles. Journal of Applied Sciences, 1-24. Lambregets, A. (1983). Vertical Flight Path And Speed Control Autopilot Design Using Total Energy Principles. Washington: AIAA . Mir, I., Maqsood, A., & Akhtar, S. (2017). Dynamic Modeling & Stability Analysis of a Generic UAV in Glide Phase. MATEC Web of Conferences, 114, 1-9. Moelyadi, M. A., & Zulkarnain, M. F. (2021). HALE UAV ITB perpertual flight. IOP Conference Series: Materials Science and Engineering, 1-8. Mulder, J. (1986). TU Delft. Retrieved July Friday, 2022, from Design and evaluation of dynamic flight test manoeuvres: https://repository.tudelft.nl/islandora/object/uuid%3Ac9201aec-cdc9-43f3- 9f90-ce896425dffe Murray, R. (2006, January 11). California Institute of Technology - Control and Dynamical Systems - Lecture 2 LQR Control. California. Nguyen, K.