49 DAFTAR PUSTAKA Abou-Yousef, H., Dacrory, S., Hasanin, M., Saber, E., and Kamel, S. (2021): Biocompatible hydrogel based on aldehyde-functionalized cellulose and chitosan for potential control drug release, Sustainable Chemistry and Pharmacy, 21(February), 100419. https://doi.org/10.1016/j.scp.2021.100419 Abyar, S., Khandar, A. A., Salehi, R., Abolfazl Hosseini-Yazdi, S., Alizadeh, E., Mahkam, M., Jamalpoor, A., White, J. M., Shojaei, M., Aizpurua-Olaizola, O., Masereeuw, R., and Janssen, M. J. (2019): In vitro nephrotoxicity and anticancer potency of newly synthesized cadmium complexes, Scientific Reports, 9(1), 1–11. https://doi.org/10.1038/s41598-019-51109-9 Akar, E., Altinişik, A., and Seki, Y. (2012): Preparation of pH- and ionic-strength responsive biodegradable fumaric acid crosslinked carboxymethyl cellulose, Carbohydrate Polymers, 90(4), 1634–1641. https://doi.org/10.1016/j.carbpol.2012.07.043 Al-Sabah, A., Burnell, S. E. A., Simoes, I. N., Jessop, Z., Badiei, N., Blain, E., and Whitaker, I. S. (2019): Structural and mechanical characterization of crosslinked and sterilised nanocellulose-based hydrogels for cartilage tissue engineering, Carbohydrate Polymers, 212(February), 242–251. https://doi.org/10.1016/j.carbpol.2019.02.057 Ali, A., and Ahmed, S. (2018): Recent Advances in Edible Polymer based Hydrogels as a Sustainable alternative to Conventional Polymers Recent Advances in Edible Polymer based Hydrogels as a Sustainable alternative to Conventional Polymers. https://doi.org/10.1021/acs.jafc.8b01052 Amzeri, A. (2018): Tinjauan Perkembangan Pertanian Jagung Di Madura Dan Alternatif Pengolahan Menjadi Biomaterial, Rekayasa, 11(1), 74. https://doi.org/10.21107/rekayasa.v11i1.4127 Anwar, M., Prasteyo, R. E., Danasari, I. F., and Ningsih, D. H. (2021): Identifikasi Peluang Usaha Pemanfaatan Limbah Tanaman Jagung (Zea 50 Mays L) Di Kabupaten Lombok Timur, Jurnal Agri Rinjani, 1(1), 41–51. Aswathy, S. H., Narendrakumar, U., and Manjubala, I. (2020): Commercial hydrogels for biomedical applications, Heliyon, 6(4), e03719. https://doi.org/10.1016/j.heliyon.2020.e03719 Bersanetti, P. A., Escobar, V. H., Nogueira, R. F., Ortega, F. dos S., Schor, P., and Morandim-Giannetti, A. de A. (2019): Enzymatically obtaining hydrogels of PVA crosslinked with ferulic acid in the presence of laccase for biomedical applications, European Polymer Journal, 112(August 2018), 610–618. https://doi.org/10.1016/j.eurpolymj.2018.10.024 Bonacchini, G. E., Bossio, C., Greco, F., Mattoli, V., Kim, Y. H., Lanzani, G., and Caironi, M. (2018): Tattoo-Paper Transfer as a Versatile Platform for All-Printed Organic Edible Electronics, Advanced Materials, 30(14), 1–8. https://doi.org/10.1002/adma.201706091 Boncler, M., Rózalski, M., Krajewska, U., Podswdek, A., and Watala, C. (2014): Comparison of PrestoBlue and MTT assays of cellular viability in the assessment of anti-proliferative effects of plant extracts on human endothelial cells, Journal of Pharmacological and Toxicological Methods, 69(1), 9–16. https://doi.org/10.1016/j.vascn.2013.09.003 Cascone, S., and Lamberti, G. (2020): Hydrogel-based commercial products for biomedical applications: A review, International Journal of Pharmaceutics, 573, 118803. https://doi.org/10.1016/j.ijpharm.2019.118803 Chen, W., Bu, Y., Li, D., Liu, C., Chen, G., Wan, X., and Li, N. (2020): High- strength, tough, and self-healing hydrogel based on carboxymethyl cellulose, Cellulose, 27(2), 853–865. https://doi.org/10.1007/s10570-019-02797-z Chesson, A. (1981): Effects of sodium hydroxide on cereal straws in relation to the enhanced degradation of structural polysaccharides by rumen microorganisms, Journal of the Science of Food and Agriculture, 32(8), 745– 758. https://doi.org/10.1002/jsfa.2740320802 51 Damshkaln, L. G., Lozinsky, V. I., Norton, I. T., and Brown, R.