82 DAFTAR PUSTAKA Afroz, M. A., Ghimire, N., Reza, K. M., Bahrami, B., Bobba, R. S., Gurung, A., Haider, A., Parameswar, C., Iyer, K., and Qiao, Q. (2020): Thermal Stability and Performance Enhancement of Perovskite Solar Cells Through Oxalic Acid-Induced Perovskite Formation, ACS Applied Energy Materials, 3, 2432−2439. https://doi.org/10.1021/acsaem.9b02111 Aghaei, M., Reinders, A., Fairbrother, A., Gok, A., Ahmad, S., Kazim, S., Lobato, K., Oreski, G., Schmitz, J., Theelen, M., Yilmaz, P., and Kettle, J. (2022): Review of degradation and failure phenomena in photovoltaic modules, Renewable and Sustainable Energy Reviews, 159, 112160. https://doi.org/10.1016/j.rser.2022.112160 Akimoto, R., Kobayashi, M., and Suzuki, T. (1996): The Urbach tail of absorption and photoluminescence spectra in EuSe, Journal of Physics: Condensed Materials, 8, 105–110. Akin, S. (2020): Boosting the eiciency and stability of perovskite solar cells through facile molecular engineering approaches, Solar Energy , 199, 136 –142. https://doi.org/10.1016/j.solener.2020.02.025 Akin, S., Bauer, M., Uchida, R., Arora, N., Jacopin, G., Liu, Y., Hertel, D., Meerholz, K., Mena- Osteritz, E., Bäuerle, P., Mohammed, S., Zakeeruddin, M. I., and Grätzel, D. M. (2020): Cyclopentadithiophene-based Hole-Transporting Material for Highly Stable Perovskite Solar Cells with Stabilized Efficiencies Approaching 21%, ACS Applied Energy Materials, 5, 1–10. https://doi.org/10.1021/acsae m.0c008 11 Akkerman, Q. A., Motti, S. G., Srimath, A. R., Kandada, Edoardo Mosconi, Valerio D’Innocenzo, G., Bertoni, S., Marras, B. A., Kamino, L., Miranda, Filippo De Angelie, A., Petrozza, M. P., and Manna, L. (2016): Solution Synthesis Approach to Colloidal Cesium Lead Halide Perovskite Nanoplatelets with Monolayer-Level Thickness Control, Journal of American Chemical Society, 138, 1010–1016. https://doi.org/10.1021/jacs.5b12124 Akkerman, Q. A., Rainò, G., Kovalenko, M. V., and Manna, L. (2018): Genesis, Challenges and Opportunities for Colloidal Lead Halide Perovskite Nanocrystals., Nature Materials, 17, 394– 405. Asadzadeha, M., Tajabadia, F., Dastan, D., Sangpour, P. Z. S., and Taghavinia, N. (2021): Facile deposition of porous fluorine doped tin oxide by Dr. Blade method for capacitive applications, Ceramics International, 47(4), 5487–5494. https://doi.org/10.1016/j.ceramint.2020.10.131 Atourki, L., Vega, E., Mollar, M., Marí, B., Kirou, H., Bouabid, K., and Ihlal, A. (2017): Impact of iodide substitution on the physical properties and stability of cesium lead halide perovskite thin films CsPbBr3−xIx (0 ≤ x ≤ 1), Journal of Alloys and Compounds, 702, 404–409. https://doi.org/10.1016/j.jallcom.2017.01.205 Azani, M.-R., Hassanpour, A., and Torres, T. (2020): Benefits, Problems, and Solutions of Silver Nanowire Transparent Conductive Electrodes in Indium Tin Oxide (ITO)-Free Flexible Solar Cells, Advanced Energy Materials, 2002536, 1–32. https://doi.org/10.1002/aenm.202002536 Baranowski, M., and Plochocka, P. (2020): Excitons in Metal-Halide Perovskites, Advanced Energy Materials, 1903659, 1–15. https://doi.org/10.1002/aenm.201903659 Beal, R. E., Slotcavage, D. J., Leijtens, T., Bowring, A. R., Belisle, R. A., Nguyen, W. H., Burkhard, G., Hoke, E. T., and McGehee, M. D. (2016): Cesium lead halide perovskites with improved stability for tandem solar cells, The Journal of Physical Chemistry Letters, 1–18. Benedek, N. A., and Fennie, C. J. (2013): Why Are There So Few Perovskite Ferroelectrics?, The Journal of Physical Chemistry C, 117, 13339−13349.