Hasil Ringkasan
PUSTAKA Michael Suryaprawira

Jumlah halaman: 35 · Jumlah kalimat ringkasan: 50

128 Appendix A – TELEMAC Rules 1. The rules of steering file syntax are the following: • The keywords may be Integer, Real, Logical, or Character type, • The order of keywords in the steering file is of no importance, • Each line is limited to 72 characters. However, it is possible to pass from one line to the next as often as required, provided that the name of the keyword is not split between two lines, • For keywords of the array type, the separator between two values is the semi-colon. It is not necessary to give several values equal to the size of the array. In this case, DAMOCLES returns the number of reading values. For example: TYPE OF ADVECTION = 1;5 (this keyword is declared as an array of 4 values) • The signs ":" or "=" can be used indiscriminately as a separator for the name of a keyword and its value. They may be preceded or followed by any number of spaces. The value itself may appear on the next line. For example: TIME STEP = 10. or TIME STEP: 10. or again TIME STEP = 10 • Characters between two "/" on a line are considered comments. Similarly, characters between a "/" and the end of the line are also considered comments. For example: TURBULENCE MODEL = 3 / Model K-Epsilon • A line beginning with "/" in the first column is considered to be all comments, even if there is another "/" in the line. For example: / The geometry file is ./mesh/geo • When writing integers, do not exceed the maximum size permitted by the computer (for a computer with 32-bit architecture, the extreme values are - Appendix A – TELEMAC Rules 129 2 147 483 647 to + 2 147 483 648. Do not leave any space between the sign (optional for the +) and the number. A full stop (.) is allowed at the end of a number, • When writing real numbers, the full stop and comma are accepted as decimal points, as are the E and D formats of FORTRAN. ( 1.E-3 0.001 0,001 1.D-3 represent the same value), • When writing logical values, the following are acceptable: 1 OUI YES .TRUE. TRUE VRAI and 0 NON NO .FALSE. FALSE FAUX, • Character strings including spaces or reserved symbols ("/",":", "=", "&") must be placed between apostrophes (’). The value of a character keyword can contain up to 144 characters. As in FORTRAN, apostrophes in a string must be doubled. A string cannot begin or end with a space. For example: TITLE = ’CASE OF GROYNE’ In addition to keywords, some instructions or meta-commands interpreted during the sequential reading of the steering file can also be used: • Command &FIN indicates the end of the file (even if the file is not finished). This means that certain keywords can be deactivated simply by placing them behind this command to reactivate them easily later on. However, the computation continues, • Command &ETA prints the list of keywords and the value that is assigned to them when DAMOCLES encounters the command. This will be displayed at the beginning of the listing printout, • Command &LIS prints the list of keywords. This will be displayed at the beginning of the listing printout, • Command &IND prints a detailed list of keywords. This will be displayed at the beginning of the listing printout, • Command &STO stops the program and the computation is interrupted. Appendix A – TELEMAC Rules 130 2. The keyword INITIAL CONDITIONS may have any of the following six values: • ’ZERO ELEVATION’: This initializes the free surface elevation at 0 (default value). The initial water depths are therefore calculated from the bottom elevation, • ’CONSTANT ELEVATION’: This initializes the free surface elevation at the value supplied by the keyword INITIAL ELEVATION (default value = 0.). The initial water depths are then calculated by subtracting the bottom elevation from the free surface elevation. In areas where the bottom elevation is higher than the initial elevation, the initial water depth is zero, • ’ZERO DEPTH’: All water depths are initialized with a zero value (free surface same as the bottom). In other words, the entire domain is dry at the start of the computation, • ’CONSTANT DEPTH’: This initializes the water depths at the value supplied by the keyword INITIAL DEPTH (default value = 0.), • ‘TPXO SATELLITE ALTIMETRY’: The initial conditions are set using the information provided by the OSU harmonic constants database (TPXO for instance) in the case of the use of this database for the imposition of maritime boundary conditions • ’PARTICULAR’ or ’SPECIAL’: The initial conditions are defined in the USER_CONDIN_H subroutine (see section 4.1.2). This solution must be used whenever the initial conditions of the model do not correspond to one of the five cases above. 131 Appendix B – Steering File Syntaxes The Steering File syntax from the 2007 calculation / Larantuka Tidal Current Simulation / Performed by: Michael Suryaprawira / Student Number: 25519305 / Written for thesis research / Ocean Engineering Master Program / Faculty of Civil and Environmental Engineering / Institut Teknologi Bandung / 2021 //////////////////////////////////////////////////////////////////////// / INPUT AND OUTPUT FILES //////////////////////////////////////////////////////////////////////// TITLE : 'Larantuka Tidal Current Simulation' FORTRAN FILE : 'user_fortran' BOUNDARY CONDITIONS FILE : './bc\bc_ntt3_2b_7.cli' GEOMETRY FILE : './geo\geo_ntt3_2b_7.slf' BINARY DATABASE 1 FOR TIDE : '..\hf.IO_2010.out' BINARY DATABASE 2 FOR TIDE : '..\uv.IO_2010.out’ RESULTS FILE : r2d_ntt3_2b_7_19.slf CHECKING THE MESH : YES //////////////////////////////////////////////////////////////////////// / OUTPUT GRAPHICS AND TIME INFORMATION //////////////////////////////////////////////////////////////////////// VARIABLES FOR GRAPHIC PRINTOUTS : 'U,V,H,S,B,M,L,W' TIME STEP : 2 NUMBER OF TIME STEPS : 345600 GRAPHIC PRINTOUT PERIOD : 300 LISTING PRINTOUT PERIOD : 300 / YEAR;MONTH;DAY HR;MIN;SEC ORIGINAL DATE OF TIME : 2007;11;26 ORIGINAL HOUR OF TIME : 11;00;00 MASS-BALANCE : YES //////////////////////////////////////////////////////////////////////// / INITIAL CONDITIONS //////////////////////////////////////////////////////////////////////// INITIAL CONDITIONS : 'TPXO SATELLITE ALTIMETRY’ //////////////////////////////////////////////////////////////////////// / BOUNDARY AND TIDE CONDITIONS //////////////////////////////////////////////////////////////////////// OPTION FOR LIQUID BOUNDARIES : 2;2 OPTION FOR TIDAL BOUNDARY CONDITIONS : 1;1 TIDAL DATA BASE : 2;2 COEFFICIENT TO CALIBRATE TIDAL RANGE : 1.06 COEFFICIENT TO CALIBRATE TIDAL V ELOCITIES : 1.06 COEFFICIENT TO CALIBRATE SEA LEVEL : 0 MINOR CONSTITUENTS INFERENCE : YES //////////////////////////////////////////////////////////////////////// Appendix B – Steering File Syntaxes 132 / GEOGRAPHIC CONDITIONS /////////////////////////////////////// ///////////////////////////////// GEOGRAPHIC SYSTEM : 3 ZONE NUMBER IN GEOGRAPHIC SYSTEM : 51 //////////////////////////////////////////////////////////////////////// / PHYSICAL OPTIONS //////////////////////////////////////////// //////////////////////////// /----------------------- 1. Friction------------------------------------ / LAW OF BOTTOM FRICTION : 4 FRICTION COEFFICIENT : 0.035 /----------------------- 2. Environmental Conditions--------------------/ CORIOLIS : YES CORIOLIS COEFFICIENT : 1.10E-4 //////////////////////////////////////////////////////////////////////// / NUMERICAL PARAMETER /////////////////////////////////////////////////////// ///////////////// DISCRETIZATIONS IN SPACE : 11 ; 11 FREE SURFACE GRADIENT COMPATIBILITY : 0 PROPAGATION : YES TREATMENT OF THE LINEAR SYSTEM : 2 MINIMUM DEPTH TO COMPUTE TIDAL VELOCITIES BOUNDARY CONDITIONS : 2 MINIMUM DEPTH TO COMPUTE TIDAL VELOC ITIES INITIAL CONDITIONS : 2 INITIAL VELOCITIES COMPUTED BY TPXO : NO TYPE OF ADVECTION : 1;5 SUPG OPTION : 0;0 MATRIX STORAGE : 3 SOLVER : 1 SOLVER ACCURACY : 1.E-6 MAXIMUM NUMBER OF ITERATIONS FOR SOLVER : 500 MASS-LUMPING ON H : 1. CONTINUITY CORRECTION : YES TREATMENT OF NEGATIVE DEPTHS : 2 MAXIMUM NUMBER OF ITERATIONS FOR ADVECTION SCHEMES : 500 BOTTOM SMOOTHINGS : 10 TIDAL FLATS : YES OPTION FOR THE TREATMENT OF TIDAL FLATS : 1 / &FIN 133 The Steering File syntax from the 2009 calculation / Larantuka Tidal Current Simulation / Performed by: Michael Suryaprawira / Student Number: 25519305 / Written for thesis research / Ocean Engineering Master Program / Faculty of Civil and Environmental Engineering / Institut Teknologi Bandung / 2021 //////////////////////////////////////////////////////////////////////// / INPUT AND OUTPUT FILES ///////////////////////////////////////////////////////// /////////////// TITLE : 'Larantuka Tidal Current Simulation' FORTRAN FILE : 'user_fortran' BOUNDARY CONDITIONS FILE : './bc\bc_ntt3_2b_7.cli' GEOMETRY FILE : './geo\geo_ntt3_2b_7.slf' BINARY DATABASE 1 FOR TIDE : '..\hf.IO_2010.out' BINARY DATABASE 2 FOR TIDE : '..\uv.IO_2010.out’ RESULTS FILE : r2d_ntt3_2b_7_19.slf CHECKING THE MESH : YES //////////////////////////////////////////////////////////////////////// / OUTPUT GRAPHICS AND T IME INFORMATION //////////////////////////////////////////////////////////////////////// VARIABLES FOR GRAPHIC PRINTOUTS : 'U,V,H,S,B,M,L,W' TIME STEP : 2 NUMBER OF TIME STEPS : 748800 GRAPHIC PRINTOUT PERIOD : 1800 LISTING PRINTOUT PERIOD : 1800 / YEAR;MONTH;DAY HR;MIN;SEC ORIGINAL DATE OF TIME : 2009;06;23 ORIGINAL HOUR OF TIME : 00;00;00 MASS-BALANCE : YES //////////////////////////////////////////////////////////////////////// / INITIAL CONDITIONS //////////////////////////////////////////////////////////////////////// INITIAL CONDITIONS : 'TPXO SATELLITE ALTIMETRY ’ //////////////////////////////////////////////////////////////////////// / BOUNDARY AND TIDE CONDITIONS //////////////////////////////////////////////////////////////////////// OPTION FOR LIQUID BOUNDARIES : 2;2 OPTION FOR TIDAL BOUNDARY CONDITIONS : 1;1 TIDAL DATA BASE : 2;2 COEFFICIENT TO CALIBRATE TIDAL RANGE : 1.06 COEFFICIENT TO CALIBRATE TI DAL VELOCITIES : 1.06 COEFFICIENT TO CALIBRATE SEA LEVEL : 0 MINOR CONSTITUENTS INFER ENCE : YES //////////////////////////////////////////////////////////////////////// / GEOGRAPHIC CONDITIONS //////////////////////////////////////////////////////////////////////// GEOGRAPHIC SYSTEM : 3 ZONE NUMBER IN GEOGRAPHIC SYSTEM : 51 Appendix B – Steering File Syntaxes 134 //////////////////////////////////////////////////////////////////////// / PHYSICAL OPTIONS //////////////////////////////////////////////////////////////////////// /----------------------- 1. Friction------------------------------------ / LAW OF BOTTOM FRICTION : 4 FRICTION COEFFICIENT : 0.035 /----------------------- 2. Environmental Conditions --------------------/ CORIOLIS : YES CORIOLIS COEFFICIENT : 1.10E-4 //////////////////////////////////////////////////////////////////////// / NUMERICAL PARAMETER //////////////////////////////////////////////////////////////////////// DISCRETIZATIONS IN SPACE : 11 ; 11 FREE SURFACE GRADIENT COMPATIBILITY : 0 PROPAGATION : YES TREATMENT OF THE LINEAR SYSTEM : 2 MINIMUM DEPTH TO COMPUTE TIDAL VELOCITIES BOUNDARY CONDITIONS : 2 MINIMUM DEPTH TO COMPUTE TIDAL VELOCITIES INITIAL CONDITIONS : 2 INITIAL VELOCITIES COMPUTED BY TPXO : NO TYPE OF ADVECTION : 1;5 SUPG OPTION : 0;0 MATRIX STORAGE : 3 SOLVER : 1 SOLVER ACCURACY : 1.E-6 MAXIMUM NUMBER OF ITERATIONS FOR SOLVER : 500 MASS-LUMPING ON H : 1. CONTINUITY CORRECTION : YES TREATMENT OF NEGATIVE DEPTHS : 2 MAXIMUM NUMBER OF ITERATIONS FOR ADVECTION SCHEMES : 500 BOTTOM SMOOTHINGS : 10 TIDAL FLATS : YES OPTION FOR THE TREATMENT OF TIDAL FLATS : 1 / &FIN Appendix B – Steering File Syntaxes 135 The Steering File syntax from the 2022 hydrodynamic impact calculation / Larantuka Tidal Current Simulation / Performed by: Michael Suryaprawira / Student Number: 25519305 / Written for thesis research / Ocean Engineering Master Program / Faculty of Civil and Environmental Engineering / Institut Teknologi Bandung / 2021 //////////////////////////////////////////////////////////////////////// / INPUT A ND OUTPUT FILES //////////////////////////////////////////////////////////////////////// TITLE : 'Larantuka Tidal Current Simulation' FORTRAN FILE : 'user_fortran' BOUNDARY CONDITIONS FILE : './bc\bc_1bc_1.cli' GEOMETRY FILE : './geo\geo_1bc_1i.slf' BINARY DATABASE 1 FOR TIDE : '..\hf.IO_2010.out' BINARY DATABASE 2 FOR TIDE : '..\uv.IO_2010.out’ RESULTS FILE : 6_r2d_1bc_1i_26.slf CHECKING THE MESH : YES ///////////////////////////////////////////////////////////////// /////// / OPTIONS FOR TEC //////////////////////////////////////////////////////////////////////// / USING THE DRAGFO SUBROUTINE VERTICAL STRUCTURES : YES / FILE WITH POSITIONS AND NUMBER OF THE TEC FORMATTED DATA FILE 2 : TEC_positions_26.xyz / RESULT FILE TO OUTPUT THE EXTRACTED POWER FORMATTED RESULTS FILE : 6_TEC_Power_1bc_1i_26.txt //////////////////////////////////////////////////////////////////////// / OUTPUT GRAPHICS AND TIME INFORMATION //////////////////////////////////////////////////////////////////////// VARIABLES FOR GRAPHIC PRINTOUTS : 'U,V,H,S,B,M,L,W' TIME STEP : 0.5 NUMBER OF TIME STEPS : 1036800 GRAPHIC PRINTOUT PERIOD : 1800 LISTING PRINTOUT PERIOD : 7200 / YEAR;MONTH;DAY HR;MIN;SEC ORIGINAL DATE OF TIME : 2022;01;01 ORIGINAL HOUR OF TIME : 00;00;00 MASS-BALANCE : YES //////////////////////////////////////////////////////////////////////// / INITIAL CONDITIONS //////////////////////////////////////////////////////////////////////// INITIAL CONDITIONS : 'TPXO SATELLITE ALTIMETRY’ Appendix B – Steering File Syntaxes 136 //////////////////////////////////////////////////////////////////////// / BOUNDARY AND TIDE CONDITIONS //////////////////////////////////////////////////////////////////////// OPTION FOR LIQUID BOUNDARIES : 2;2 OPTION FOR TIDAL BOUNDARY CONDITIONS : 1;1 TIDAL DATA BASE : 2;2 COEFFICIENT TO CALIBRATE TIDAL RANGE : 1.06 COEFFICIENT TO CALIBRATE TIDAL VELOCITIES : 1.06 COEFFICIENT TO CALIBRATE SEA LEVEL : 0 MINOR CONSTITUENTS INFERENCE : YES ////////////////////////// ////////////////////////////////////////////// / GEOGRAPHIC CONDITIONS //////////////////////////////////////////////////////////////////////// GEOGRAPHIC SYSTEM : 3 ZONE NUMBER IN GEOGRAPHIC SYSTEM : 51 //////////////////////////////////////////////////////////////////////// / PHYSICAL OPTIONS //////////////////////////////////////////////////////////////////////// /----------------------- 1. Friction--------------------------------- ---/ LAW OF BOTTOM FRICTION : 4 FRICTION COEFFICIENT : 0.035 /----------------------- 2. Environmental Conditions --------------------/ CORIOLIS : YES CORIOLIS COEFFICIENT : 1.10E-4 TURBULENCE MODEL : 4 DIFFUSION OF VELOCITY : YES VELOCITY DIFFUSIVITY : 1.E-6 //////////////////////////////////////////////////////////////////////// / NUMERICAL PARAMETER //////////////////////////////////////////////////////////////////////// DISCRETIZATIONS IN SPACE : 11 ; 11 FREE SURFACE GRADIENT COMPATIBILITY : 0 PROPAGATION : YES TREATMENT OF THE LINEAR SYSTEM : 2 MINIMUM DEPTH TO COMPUTE TIDAL VELOCITIES BOUNDARY CONDITIONS : 2 MINIMUM DEPTH TO COMPUTE TIDAL VELOCITIES INITIAL CONDITIONS : 2 INITIAL VELOCITIES COMPUTED BY TPXO : NO BOTTOM SMOOTHINGS : 4 MATRIX STORAGE : 3 SOLVER : 3 SOLVER OPTION : 3 SOLVER ACCURACY : 1.E-6 MAXIMUM NUMBER OF ITERATIONS FOR SOLVER : 1500 /----------------------- 1. Advection-Diffusion------------------------- / TYPE OF ADVECTION : 1;5 VELOCITY PROFILES : 2 SUPG OPTION : 0;0 MAXIMUM NUMBER OF ITERATIONS FOR ADVECTION SCHEMES : 1500 Appendix B – Steering File Syntaxes 137 /----------------------- 2. Propagation--------------------------- ------/ IMPLICITATION FOR DEPTH : 1. IMPLICITATION FOR VELOCITY : 1. IMPLICITATION FOR DIFFUSION OF VELOCITY : 1. MASS-LUMPING ON H : 1. /----------------------- 3. Tidal Settings------------------------------ / CONTINUITY CORRECTION : YES TREATMENT OF NEGATIVE DEPTHS : 2 TIDAL FLATS : YES OPTION FOR THE TREATMENT OF TIDAL FLATS : 1 &FIN Appendix C – TELEMAC Keywords Definition 138 Appendix C – TELEMAC Keywords Definition 1 Input and Output Files //////////////////////////////////////////////////////////////////////// / INPUT AND OUTPUT FILES //////////////////////////////////////////////////////////////////////// TITLE : 'Larantuka Tidal Current Simulation' FORTRAN FILE : 'user_fortran' BOUNDARY CONDITIONS FILE : './bc\bc_ntt3_2b_7.cli' GEOMETRY FILE : './geo\geo_ntt3_2b_7.slf' BINARY DATABASE 1 FOR TIDE : '..\hf.IO_2010.out' BINARY DATABASE 2 FOR TIDE : '..\uv.IO_2010.out’ RESULTS FILE : r2d_ntt3_2b_7_19.slf CHECKING THE MESH : YES This section is where users define the location of the files required as a TELEMAC input (FORTRAN File, Boundary Conditions File, Geometry File, and Tidal Database) and computational output (Results File). CHECKING THE MESH option allows users to see the TELEMAC mesh analysis. It states the number of elements, nodes, and the overall quality of the mesh. Thus, users can analyze the correlation between the results and the mesh quality. 2 Output Graphics and Time Information ////////////////////////////////////////////////////////// ////////////// / OUTPUT GRAPHICS AND TIME INFORMATION //////////////////////////////////////////////////////////////////////// VARIABLES FOR GRAPHIC PRINTOUTS : 'U,V,H,S,B,M,L,W' TIME STEP : 2 NUMBER OF TIME STEPS : 345600 GRAPHIC PRINTOUT PERIOD : 300 LISTING PRINTOUT PERIOD : 300 / YEAR;MONTH;DAY HR;MIN;SEC ORIGINAL DATE OF TIME : 2007;11;26 ORIGINAL HOUR OF TIME : 11;00;00 MASS-BALANCE : YES A section that consists of time information such as calculation start date and hour, and time steps information. VARIABLES FOR GRAPHIC PRINTOUTS is used to specify the list of variables to be stored in the results file. Each variable is identified by a symbol (capital letter of the alphabet or mnemonic of no more than 8 characters). In this research, there are 8 printed. They are: Appendix C – TELEMAC Keywords Definition 139 • U : velocity along the x-axis (m/s), • V : velocity along the y-axis (m/s), • H : water depth (m), • S : free surface elevation (m), • B : bottom elevation (m), • M : scalar velocity (m/s), • L : courant number, • W : friction coefficient These variables can be accessed using BlueKenue once the calculation has finished. The Timestep is the duration interval of the computational time step, in seconds. The duration of the whole calculation is the number of time steps times the time step interval. As shown above, for example, the duration of the calculation is 345600 time-steps times 2 seconds equals 192 hours/8 days. GRAPHIC PRINTOUT PERIOD and LISTING PRINTOUT PERIOD are used to determine the interval for outputs. This is done to avoid having excessively large files. 3 Initial Conditions //////////////////////////////////////////////////////////////////////// / INITIAL CONDITIONS /////////////////////////////////////////////////////////// ///////////// INITIAL CONDITIONS : 'TPXO SATELLITE ALTIMETRY’ The purpose of the initial conditions is to describe the state of the model at the start of the simulation. In the case of a continued computation, this state is provided by the last time step of the results file of the previous computation. In all cases, the kind of the initial conditions is set by the keyword INITIAL CONDITIONS, which may have any of the six values described in Appendix A point 2. Appendix C – TELEMAC Keywords Definition 140 4 Boundary and Tide Conditions //////////////////////////////////////////////////////////////////////// / BOUNDARY AND TIDE CONDITIONS //////////////////////////////////////////////////////////////////////// OPTION FOR LIQUID BOUNDARIES : 2;2 OPTION FOR TIDAL BOUNDARY CONDITIONS : 1;1 TIDAL DATA BASE : 2;2 COEFFICIENT TO CALIBRATE TIDAL RANGE : 1.06 COEFFICIENT TO CALIBRATE TI DAL VELOCITIES : 1.06 COEFFICIENT TO CALIBRATE SEA LEVEL : 0 MINOR CONSTITUENTS INFERENCE : YES This section states the boundary conditions which are given for each of the boundary points. The main concern is the variables of TELEMAC-2D or the values deduced from them: water depth, the two components of velocity (or flow rate), and the tracer. The various types of boundary conditions may be combined to prescribe boundary conditions of any type (inflow or outflow of liquid in a supercritical or subcritical regime, open sea, wall, etc.). There are also options to manually prescribe inflow, outflow, water elevation, and current speed using the steering file. However, this condition has been fulfilled by TELEMAC if the user is using the TPXO file. Thus, users need not manually prescribe these variables into the boundary. 4.a OPTION FOR LIQUID BOUNDARIES There are two values available for this keyword: • 1: Strong setting (default value for all boundaries), • 2: Thompson method. The user must specify one value for each open boundary. Thus, for example, if there are three boundaries in the domain, the users must specify three values representing each boundary. For example, if the user specifies 2;1;1 as the value, TELEMAC will assign Thompson Method for the first boundary, and Strong Setting for the latter two. Taking a simplified view, it may be said that, in the case of the first option, the values are “imposed”, and in the case of the second option, the values are Appendix C – TELEMAC Keywords Definition 141 “suggested”. Thompson Method itself is often used to solve under-constrained or over-constrained models (where a model is either lacking values or too much information specified on the boundaries respectively). 4.b OPTION FOR TIDAL BOUNDARY CONDITIONS The keyword OPTION FOR TIDAL BOUNDARY CONDITIONS allow s specifying the type of tide to prescribe. Default value 0 means no prescribed tide or that the tide is not treated by standard algorithms. Value 1 corresponds to prescribing a real tide considering the time calibration given by the keywords ORIGINAL DATE OF TIME (YYYY ; MM ; DD format) and ORIGINAL HOUR OF TIME (HH ; MM ; SS format). The other options are for schematic tide and applicable for other tidal databases besides TPXO. 4.c TIDAL DATA BASE This keyword allows users to specify the database used on each open boundary. Thus, users can use a different tidal database on each boundary. This keyword can take values: • 1: JMJ (Jean-Marc JANIN) • 2: TPXO • 3: Miscellaneous (LEGOS-NEA, FES20XX, NAOTide, PREMIVER, etc) For example, if users write TIDAL DATA BASE: 1;2;2, it means that there are 3 open boundaries, with JMJ prescribed on the first boundary and TPXO on the rest. 4.d COEFFICIENT TO CALIBRATE The transfer of information between a large-scale model and the boundaries of a more local model generally requires calibration. To do this, coefficients are applied to calibrate the result. the keyword COEFFICIENT TO CALIBRATE SEA LEVEL (default real value 0.) allows users to calibrate the mean tide level (the harmonic decomposition of information provided by the various databases is used to generate the tidal signal Appendix C – TELEMAC Keywords Definition 142 oscillating around the mean tide level). The calibration of the mean tide level must be made depending on the altimetric reference used in the model, The keyword COEFFICIENT TO CALIBRATE TIDAL RANGE contains a multiplying coefficient of the tidal signal imposed at each maritime border node and makes it possible to adjust the amplitude of the tidal range. The keyword COEFFICIENT TO CALIBRATE TIDAL VELOCITY contains a multiplication coefficient of the tidal wave speed signal imposed at each maritime border node and allows the amplitude of the current speeds to be adjusted. By default, its value is 999,999, which means that it is the square root of the value of the COEFFICIENT TO CALIBRATE TIDAL RANGE keyword is used because the speed of the tidal wave is proportional to the square root. 4.e MINOR CONSTITUENT INFERENCE Lastly, MINOR CONSTITUENT INFERENCE allows users to activate an interpolation algorithm of minor constituents from data read in the database. 5 Geographic Conditions //////////////////////////////////////////////////////////////////////// / GEOGRAPHIC CONDITIONS //////////////////////////////////////////////////////////////////////// GEOGRAPHIC SYSTEM : 3 ZONE NUMBER IN GEOGRAPHIC SYSTEM : 51 To perform the spatial interpolation of the tidal data, it is mandatory to provide TELEMAC-2D information on the spatial positioning of the mesh model relative to the grid of the tidal database. To do this, the user has two keywords: The first keyword specifies the geographic system used to establish the coordinates of the 2D mesh of TELEMAC-2D. This keyword GEOGRAPHIC SYSTEM, which has no default value, may take the following values: • 0: User-Defined, • 1: WGS84 longitude/latitude in real degrees, Appendix C – TELEMAC Keywords Definition 143 • 2: WGS84 UTM North, • 3: WGS84 UTM South, • 4: Lambert, • 5: Mercator projection. The second keyword is used to specify the area of the geographic system used to establish the coordinates of the 2D mesh of TELEMAC-2D. This keyword ZONE NUMBER IN GEOGRAPHIC SYSTEM, which has no default value, may take the following values: • 1: Lambert 1 North, • 2: Lambert 2 Center, • 3: Lambert 3 South, • 4: Lambert 4 Corsica, • 22: Lambert 2 extended, • 93: Lambert 93, • X: UTM zone value of the WGS84 (X is the number of the zone). 6 Physical Options //////////////////////////////////////////////////////////////////////// / PHYSICAL OPTIONS //////////////////////////////////////////////////////////////////////// /----------------------- 1. Friction------------------------------------ / LAW OF BOTTOM FRICTION : 4 FRICTION COEFFICIENT : 0.035 /----------------------- 2.