Koleksi digital milik UPT Perpustakaan ITB untuk keperluan pendidikan dan penelitian

Bab II Tinjauan Pustaka

II.1  Analisis Iklim Baseline

Perubahan iklim menimbulkan risiko bagi manusia dan sistem alam. Risiko
perubahan iklim menurut IPCC (2014) merupakan potensi dampak negatif
perubahan iklim yang dihasilkan dari interaksi antara kerentanan (vulnerability),
keterpaparan (exposure) dan ancaman (hazard). Analisis risiko perubahan iklim
melibatkan interaksi iklim, lingkungan dan faktor manusia yang mengarah pada
dampak serta peranan faktor non-iklim yang menentukan dampak (Gambar II.1).
Evaluasi variabilitas iklim alami dan perubahan iklim antropogenik pada kejadian
cuaca dan iklim ekstrem merupakan bagian dari analisis ancaman (kiri). Sedangkan
proses adaptasi dan mitigasi, sosial dan ekonomi, kebijakan pemerintah (kanan)

terkait dengan analisis keterpaparan dan kerentanan.
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Gambar II.1 Konsep risiko dampak perubahan iklim hasil interaksi
ancaman’/hazard, keterpaparan/exposure dan
kerentanan/vulnerability (sumber: IPCC, 2014)

Analisis perubahan iklim menurut IPCC-TGICA (2007) secara umum dilakukan
dengan dua pendekatan yakni top-down berdasarkan skenario proyeksi hasil-hasil
simulasi GCM dan bottom-up berdasarkan analisis data observasi iklim baseline.
Data klimatologi observasi dengan kualitas yang baik dibutuhkan untuk periode

baseline. Data iklim baseline ditentukan berdasarkan tipe data, durasi periode
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baseline, sumber data dan bagaimana aplikasi penggunaannya dalam penilaian
dampak. Presipitasi merupakan salah satu parameter penting untuk analisis
perubahan iklim. Kriteria pemilihan periode baseline menurut IPCC, (Carter dkk.,
1994) antara lain:
e menggambarkan kondisi saat ini atau rata-rata iklim saat ini di suatu wilayah
studi
e durasi yang cukup untuk mencakup variasi iklim termasuk jumlah
signifikan anomali cuaca
e mencakup ketersediaan periode data semua parameter iklim dan
terdistribusi serta berkualitas baik
e konsisten dan dapat dibandingkan dengan baseline yang digunakan oleh

penilaian dampak lainnya

Periode baseline iklim yang umum digunakan adalah periode “normal” 30 tahun
yang ditentukan oleh World Meteorology Organization (WMO). Sejak 1956, WMO
(2007) telah merekomendasikan negara anggotanya untuk menghitung normal
iklim 30 tahun setiap sepuluh tahun. Standar normal klimatologi WMO merupakan
data iklim rata-rata yang dihitung setiap periode 30 tahun diakhiri dengan tahun
yang berakhiran nol (0) misalkan standar normal saat ini adalah adalah 1 Januari
1981 hingga 31 Desember 2010. Periode referen standar normal untuk analisis
perubahan iklim saat ini adalah periode 1961 hingga 1990, sehingga untuk
melakukan analisis perubahan iklim diperlukan periode minimal 60 tahun atau dua
periode normal misalkan periode 1961-1990 dibandingkan dengan normal lainnya
seperti 1981-2010. Beberapa sumber untuk memperoleh data iklim baseline (IPCC-
TGICA, 2007) antara lain: badan meteorologi nasional dan arsip, dataset

supranasional dan global, serta output dari model iklim dan generator cuaca.

I1.2  Dataset Presipitasi

Presipitasi merupakan komponen utama dalam siklus hidrologi, presipitasi adalah
berbagai produk hasil kondensasi uap air di atmosfer yang jatuh ke Bumi (Tjasyono,
2004) akibat pengaruh gravitasi. Presipitasi berupa hujan, gerimis, salju, batu es

(hail), sleet, graupel, virga, kabut, dan embun. Pengukuran presipitasi permukaan
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dilakukan oleh penakar hujan, disdrometer, dan ground radar. Sedangkan estimasi
presipitasi menggunakan satelit dengan teknik microwave (aktif dan pasif) dan

merging infra merah serta kombinasi dari teknik tersebut (Tapiador dkk., 2012).

Dataset presipitasi yaitu kumpulan data presipitasi global dengan resolusi grid
tertentu dapat dimanfaatkan dalam melakukan analisis iklim baseline. Saat ini
sudah banyak dikembangkan dataset presipitasi berbasis grid, menurut Beck dkk.
(2017), dataset berbeda-beda dalam hal: desain objektif (homogenitas temporal,
akurasi atau keduanya), sumber data (radar, penakar hujan satelit, analisis atau
reanalisis atau kombinasi), resolusi spasial (dari 0,05 hingga 2,5 derajat), cakupan
wilayah (dari benua hingga global), resolusi temporal yang dipublikasi (dari 30
menit hingga bulanan), rentang waktu (dari satu hingga 115 tahun), dan

latensi/lamanya perpindahan data (dari tiga jam hingga beberapa tahun).

Jenis dataset presipitasi beserta metode pembuatannya disajikan dalam Gambar
I1.2. Resolusi spasial maupun temporal dataset presipitasi cukup beragam, Gambar
II.3 menunjukkan panjang dataset presipitasi berbagai resolusi spasial dengan
resolusi temporal bulanan dan Gambar I1.4 merupakan resolusi temporal harian
(termasuk di dalamnya subharian: tiga jam-an dan enam jam-an). Ketersediaan
dataset presipitasi bulanan yang memiliki periode terpanjang berdasarkan Gambar
1.3 adalah dataset National Oceanic & Atmospheric Administration 20 Century
(NOAA 20 CR) diikuti oleh Climatic Research Unit (CRU), Willmot & Matsuura,
Global Precipitation Climatology Centre Full Data Reanalysis (GPCC FDR), dan
ERA-20CM. Dataset presipitasi harian terpanjang berdasarkan Gambar 11.4 adalah
NOAA-20CR, ERA-20CM, dan Global Meteorological Forcing Dataset (GFD).
Dataset berdasarkan data penakar hujan dan reanalisis umumnya menyediakan
periode jangka waktu yang cukup panjang, sedangkan dataset berdasarkan data
satelit memiliki keterbatasan panjang periode namum dapat memberikan informasi
penting mengenai dinamika cuaca, kekeringan, dan monitoring hidrologi (Sun dkk,

2017).
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Terdapat tiga kategori dataset presipitasi (Arakawa dan Kitoh, 2011) antara lain:
pertama, dataset berdasarkan penakar hujan. Kedua, dataset berdasarkan data
satelit baik menggunakan perangkat infra merah (infrared) maupun gelombang
mikro (microwave). Ketiga, dataset berdasarkan kombinasi penakar hujan dan
satelit. Selain itu, ada juga dataset presipitasi reanalisis yang dibuat dengan skema
asimilasi dan model melibatkan semua data observasi yang ada pada setiap jam
tertentu (misal sembilan hingga 12 jam) dalam proses analisisnya. Data observasi
yang digunakan antara lain: data radiosonde, satelit, buoy, penerbangan, dan kapal
laut. Data reanalisis meliputi data observasi masa lalu dengan model berdasarkan
sistem asimilasi data yang juga digunakan dalam prakiraan cuaca, selain itu terdapat
juga dataset kombinasi observasi, satelit, dan reanalisis. Kelebihan dan kekurangan

dataset presipitasi berdasarkan sumber datanya disajikan dalam Tabel II.1.

CRU, GPGC, CPC,

Dataset Presipitasi APHRODITE, SA-OBS, Interpolasi
Observasi WILLMOT & MATSURA,
CMAP Microwave
Dataset Presipitasi
Kombinasi Observasi
dan Satelit —
—— PERSIANN CDR infra red
Data |klim baseline
Dataset Presipitasi IMERG, TMPA, SM2RAIN- .
Salelit ccl Merging
CHIRPS
L—— CMORPH, GSMAP . Blending
Dataset Presipitasi
— Kombinasi Observasi, —
Satelit dan Reanalisis
L—  MSWwEP
L—— Dataset Reanalisis MERRA, CFPSR, JRA-S5, Asimilasi

ERA-5, NOAA-20CR

GFD Downscaling

Gambar 1.2 Ketersediaan dataset presipitasi untuk mendukung data iklim
baseline.
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Tabel II.1 Kelebihan dan kekurangan dataset presipitasi berdasarkan sumber data
(Li dkk., 2018; Sun dkk., 2018).

No | Dataset Presipitasi Kelebihan Kekurangan

1 | Berdasarkan penakar - Merupakan -Kualitas dataset
hujan (contoh: 4sian aplikasi tergantung dari
Precipitation — Highly pengukuran kerapatan penakar
Resolved Observational original dari | hujan, semakin rapat
Data Integration permukaan dengan | realitas presipitasi
Towards Evaluation of periode data yang | semakin baik (Li dkk.,
Water panjang (Li dkk., | 2018) dan topografi
Resources/APHRODITE | 2018) mempengaruhi error
dan -Metode interpolasi
Southeast Asia kurang mampu
Observation/SA-OBS) mengatasi  kelemahan

dari pengukuran
penakar hujan (Li dkk.,
2018)

-Jumlah penakar hujan
yang semakin menurun
akibat masalah biaya
operasional, kebijakan
organisasi meteorologi
setempat, perpindahan,
dan penelantaran lokasi,
masalah ekonomi-politik
(Strangways, 2006; Sun
dkk., 2018)

2 | Berdasarkan satelit - Data observasi |- Ketergantungan pada
(contoh: Climate secara spasial, | bias platform dan sensor
Prediction Center kualitas data tidak | yang disebabkan oleh
MORPHing terpengaruh  oleh | salju dan es (Li dkk.,
technique/CMORPH, angin dan | 2018)

Global Precipitation parameter  cuaca |- Periode data umumnya
Measurement- lain (Li dkk., 2018) | lebih pendek
Integrated Multi- - Data selalu ada | dibandingkan dataset
satellitE Retrievals for pembaharuan berdasarkan  penakar
GPM/GPM-IMERG, mendekati real | hujan dan reanalisis
dan Global Satellite time (Sun dkk., 2018)
Mapping of - Memiliki resolusi - Masing-masing sensor
Precipitation/GSMaP) temporal yang | satelit, algoritma
lebih tinggi hingga | pengolahan dan
30 menit sehingga | granularity
dapat mempengaruhi
menggambarkan keakuratan estimasi
kejadian hujan | presipitasi (Hufman
ekstrem dkk., 2010)
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Berdasarkan reanalisis
(contoh: ERA-20C,
ERAS, dan JRA-25)

- Kombinasi dari

data model dengan
berbagai tipe data
observasi (Li dkk.,
2018)
Ketersediaan
Periode dataset

yang panjang

- Adanya perubahan
error sistem observasi
model (Li dkk., 2018)

- Resolusi spasial yang
rendah

Berdasarkan kombinasi
(contoh:

Climate Hazards group
Infrared Precipitation
with Stations/CHIRPS,
MSWEP,

GFD, Precipitation
Estimation from
Remotely Sensed
Information Using
Artificial Neural
Networks- Climate Data
Record /PERSIANN-
CDR dan TRMM
Multisatellite
Precipitation
Analysis/TMPA 3B42)

Memperoleh
keunggulan yang
lengkap dari
sumber data
penakar hujan,
satelit, dan
reanalisis (L1 dkk.,
2018)

-tetap ada koreksi untuk
mengurangi kesalahan

Evaluasi Dataset Presipitasi
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Studi evaluasi terhadap dataset presipitasi telah banyak dilakukan pada penelitian
sebelumnya untuk memahami kelebihan dan kekurangan dari produk dataset
presipitasi tersebut (Beck dkk., 2017). Ada yang menggunakan data stasiun sebagai
data referen (Hirpa dkk., 2010; Buarque dkk., 2011; Bumke dkk., 2016; Alijanian
dkk., 2017) atau radar yang telah dikoreksi dengan penakar hujan (AghaKouchak
dkk., 2011; Islam dkk., 2012), perbandingan pola spasio-temporal (Kidd dkk.,
2013), dan perbandingan hasil modeling hidrologi yang berkaitan dengan simulasi
debit sungai (Collischonn dkk., 2008; Behrangi dkk., 2011; Beck dkk., 2017;
Mazzoleni dkk., 2019).

Metode studi perbandingan dataset presipitasi sebelumnya menggunakan metrik
performa statistik antara lain: koefisien korelasi (Beck dkk., 2017), bias (RMSE,
Mean Absolute Error/MAE, persentil 90,99, dryspell, dan lain-lain) (Prasetia dkk.,
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2011; Vernimmen dkk., 2012; Beck dkk., 2017), performa kategori seperti tabel
kontingensi (Van den Besselaar dkk., 2017), Kling-Gupta efficiency/KGE (Beck
dkk., 2019), Probability of Detection (POD), dan False Alarm Ratio (FAR)
(Maggioni dkk., 2016). Metrik performa lainnya yang digunakan seperti Nash—
Sutcliffe model efficiency coefficient (NSE) untuk simulasi modeling hidrologi
(Beck dkk., 2017; Mazzoleni dkk., 2019), indeks musim: Entropi Relatif/RE dan
indeks musim nondimensi/DSI (Pascale dkk., 2015; Ceglar dkk., 2017), analisis
distribusi, skill score fraksi kejadian hujan lebat atau nilai ekstrem (Ceglar dkk.,
2017). Ahmadalipour dkk. (2017) serta Chinn dan Yoden (2018) melakukan
analisis performa multi data model iklim dengan dataset presipitasi sebagai referen
menggunakan multi metrik antara lain: rata-rata, varians, koefisien korelasi, tren
dan perubahan relatif untuk teknik univariat, sedangkan teknik multivariat
menggunakan PCA, SVD, Canonical Correlation Analysis (CCA), dan analisis

kluster.

Sun dkk. (2018) melakukan investigasi perbandingan dan perbedaan secara global
terhadap 30 dataset presipitasi skala waktu tahunan, bulanan, dan harian
berdasarkan kategorinya. Hasil menunjukkan terdapat ketidakpastian yang tinggi
pada besaran nilai dan variabilitas presipitasi pada berbagai skala waktu. Variasi
tahunan hingga mencapai 300 mm dan perbedaan tertinggi umumnya terdapat pada
dataset reanalisis dibandingkan dataset basis lainnya. Secara musiman, perbedaan
jumlah presipitasi periode JJA (Juni-Juli-Agustus) dan MAM (Maret-April-Mei)
berkontribusi terhadap perbedaan tahunan dibandingkan periode lain. Pada skala
harian kejadian hujan ringan lebih sering terjadi dan memiliki perbedaan yang
tinggi. Perbedaan kejadian presipitasi ekstrem lebih tinggi di lintang rendah
dibandingkan lintang yang lebih tinggi. Jumlah ketersediaan penakar hujan semakin
menurun dan terbatas pada sampling bulanan, sehingga sulit untuk melihat
perubahan kejadian ekstrem jangka pendek. Dataset berdasarkan satelit sulit
digunakan untuk studi berbasis klimatologi karena ketersediaan paling panjang

hanya 40 tahun.
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Studi sebelumnya mengenai perbandingan berbagai dataset presipitasi untuk
wilayah Indonesia yaitu performa dataset SA-OBS di wilayah Asia Tenggara
dibandingkan dengan APHRODITE, CMORPH dan Tropical Rainfall Measuring
Mission (TRMM) menunjukkan SA-OBS lebih mewakili observasi stasiun dalam
hal frekuensi kering/basah, waktu kejadian presipitasi dan reproduksi presipitasi
ekstrem (Van den Besselaar dkk., 2017). Validasi TRMM terhadap 20 penakar
hujan data observasi di Indonesia berdasarkan tipe hujan tahun 2004-2008
menunjukkan data TRMM underestimate pada tipe monsun dan semi-monsun
sedangkan pada tipe anti-monsun overestimate (Prasetia dkk., 2011). Dataset
TMPA 3B42RT memiliki akurasi tertinggi dibandingkan PERSIANN dan
CMORPH di wilayah Indonesia untuk musim kemarau dan tahunan dengan tujuan

monitoring kekeringan (Vernimmen dkk., 2012).

II.4 Rekonstruksi Data

Pendekatan untuk mengatasi keterbatasan data dapat dilakukan dengan rekonstruksi
data presipitasi atau curah hujan masa lalu. Beberapa metode rekonstruksi dataset
presipitasi dalam mendukung ketersediaan data iklim baseline antara lain metode
interpolasi, merging, blending, microwave (aktif maupun pasif), infrared, asimilasi
dan downscaling serta beberapa kombinasi dari metode tersebut seperti pada
Gamabr II.2. Penelitian mengenai rekonstruksi curah hujan sebelumnya disajikan

pada Tabel I1.2.

Rekonstruksi curah hujan di wilayah Indonesia pernah dilakukan oleh Van den
Besselaar dkk. (2017) yaitu dataset SA-OBS dengan panjang data dari tahun 1981
hingga 2017, dan untuk wilayah Pulau Jawa oleh Yanto dkk. (2017) periode 1985-
2014 dengan metode interpolasi. Rekonstruksi data oleh Kautz dkk. (2019),
Caillouet dkk. (2016), dan Caillouet dkk. (2019) dengan melakukan pengembangan

model presipitasi secara stokastik atau downscaling dataset reanalisis global.
Metode downscaling dilakukan untuk mendapatkan informasi cuaca dan iklim

skala lokal terutama dekat permukaan, dari variabel atmosfer skala regional dari

GCM. Metode downscaling dapat dibagi dalam dua jenis yaitu dinamik dan
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statistik. Dalam metode downscaling dinamik luaran dari GCM digunakan untuk
menjalankan model numerik regional dengan resolusi spasial yang lebih tinggi
sehingga kondisi lokal disimulasi lebih detil. Dalam DS, hubungan statistik antara
variabel observasi dan GCM yang dibangun untuk mendapatkan variabel lokal dari

luaran GCM.

Tabel I1.2 Penelitian sebelumnya mengenai rekonstruksi data.

No | Tema Penelitian Sumber Pustaka

1 | SA-OBS dataset suhu udara permukaan dan | Van den Besselaar dkk.
presipitasi harian di wilayah Asia Tenggara (2017)

2 | Pengembangan dataset grid cuaca di wilayah | Yanto dkk. (2017)
Pulau Jawa Indonesia 1985-2014
3 | Simulasi Weather Research and Forecasting | Cardoso dkk. (2013)

(WRF) untuk analisis presipitasi klimatologis

dan ekstrem

4 | Pengembangan dataset presipitasi di Eropa | Kautz dkk. (2019)

secara stokastik

5 | Rekonstruksi dataset cuaca ensemble harian | Caillouet dkk. (2019)

142 tahun dengan resolusi tinggi di wilayah

Prancis

Rekonstruksi dengan metode downscaling dinamik dilakukan oleh Cardoso dkk.
(2013) dan Kautz dkk. (2019) terhadap data reanalisis global yaitu data ERA-
Interim dan ERA-20C dengan tujuan aplikasi hidrologi untuk menganalisis
representasi sistem cuaca transient (tidak tetap) dan mereproduksi variabilitas
spasial data observasi serta cuaca ekstrem secara statistik (Cardoso dkk., 2013).
Luaran data hasil proses berupa Regional Climate Model (RCM) dengan integrasi
data curah hujan harian. Informasi yang didapatkan dari hasil RCM lebih akurat
dibandingkan dengan data global yang resolusinya lebih kasar, namun proses
downscaling dinamik membutuhkan kapasitas komputasi tinggi untuk
menghasilkan hasil simulasi RCM dengan resolusi tinggi. Keterbatasan kapasitas

komputasi dapat diatasi dengan melakukan downscaling metode lainnya yaitu
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secara statistik. Metode DS dapat dilakukan untuk menurunkan dari variabel
atmosfer skala global seperti data reanalisis menjadi variabel meteorologi dekat
permukaan skala lokal. Metode DS membutuhkan lebih sedikit sumber daya dan
lebih kecil waktu perhitungan dibandingkan dengan downscaling dinamik (Hidalgo
dkk., 2008).

Cillouet dkk. (2016) melakukan DS Stepwise Analogue Downscaling method for
Hydrology (SANDHY ) untuk memperoleh rekonstruksi probabilitas presipitasi dan
suhu di Prancis dari tahun 1871-2012 dari data reanalisis global NOAA 20CR.
SANDHY menyediakan 125 analog ensemble harian periode 1871-2012 untuk 608
zona homogen di Prancis. Metode DS memiliki tiga macam teknik (Wilby dkk.,
2004) antara lain: weather classification, regression models, dan weather
generators. Pendekatan analog merupakan salah satu contoh teknik weather
classification dimana prediktor dipilih berdasarkan kecocokan analog pola cuaca
sebelumnya dengan saat ini. Dalam penelitian ini dilakukan pengembangan metode
DS CA untuk merekonstruksi presipitasi masa lalu dengan langkah ke belakang
(backward).

I1.2.1 Constructed Analogue

Metoda DS dengan pendekatan analog telah dikembangkan oleh Lorenz (1969),
Van den Dool (1994), dan Zorita dkk. (1995) untuk prediksi cuaca. Zorita dan von
Storch (1999) serta Hidalgo dkk. (2008) menggunakannya untuk memperoleh
statistik iklim lokal yang konsisten dengan kondisi atmostfer skala luas. Penerapan
metode analog membutuhkan basis data yang panjang agar dapat mencakup pola
cuaca atau kondisi atmosfer yang mungkin muncul di masa mendatang. Kelebihan
dari metode CA adalah adanya analogi pola iklim skala lokal dengan suatu
kondisi/pola iklim skala luas sehingga struktur spasial dari iklim lokal terwakilkan
dengan baik pada hasil simulasi. Metode CA meminimalisir bias dan menggunakan
nilai absolut dari prediktan dalam estimasi. Perbandingan metode DS CA

dibandingkan metode DS lainnya disajikan pada Tabel I1.3.
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Tabel I1.3 Perbandingan metode CA dengan metode DS lainnya

No

Metode CA

Metode DS lainnya

Variabel prediktor bisa sama atau

berbeda dengan prediktan,
hubungan fisis masih
dipertahankan  dengan adanya
pemilihan analog pola iklim/cuaca.
Distribusi yang digunakan bisa
dengan non normal (Hidalgo dkk.,

2008).

Metode SD kategori linier seperti
regresi linier, analisis CCA, SVD,
dan metode Delta, dapat
menggunakan  banyak  prediktor
namun memiliki asumsi distribusi
normal sehingga tidak cocok untuk
kejadian esktrem (Hidalgo dkk.,

2008)

Mempertahankan pola cuaca harian
dari data GCM/reanalisis, yaitu
dengan melakukan kombinasi linier
data prediktor yang digunakan
untuk membentuk analog (minimal
30) dan hasil downscaling
diperoleh dengan mengaplikasikan
kombinasi linier tersebut terhadap

data prediktan pada tanggal yang
sama (Wilby dkk., 2004).

Metode DS bias koreksi hanya
menggunakan rata-rata bulanan dari
GCM/reanalisis dan merekonstruksi
pola data harian dengan mengambil
sampel ulang secara acak pada data
bulanan historis dan menskalakan

nilai variabel harian mengikuti nilai

proyeksi bulanan (Wilby dkk., 2004).

Interval waktu hasil DS CA
mengikuti prediktor, tidak mampu
memprediksi di luar kondisi yang
direkam (Hidalgo dkk., 2008).
Metode DS kategori weather
classification seperti metode analog
dan  kluster  tidak  mampu
mereproduksi wet dan dry spell
(wilby dkk., 2004)

Metode DS  kategori  weather

generator, dapat  men-generate
informasi sub-harian dari prediktor
harian, menghasilkan banyak time-
series dan post-processing dan dapat

mensimulasi wet dan dry spell

(Hidalgo dkk., 2008).
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Kemampuan metode DS CA bergantung pada kemiripan antar pola yang
didefinisikan dalam pencarian analog (Zorita dan von Storch, 1998). Timbal dan
McAvaney (2001) serta Anuchaivong dkk. (2017) menggunakan metrik Euclidean
distance paling minimum sebagai perhitungan derajat kemiripan pola cuaca dari
prediktor. Metrik lainnya yaitu Cosine Similarity seperti yang digunakan oleh
Syahputra (2012) dan Surmaini dkk. (2015).

Pemilihan prediktor dalam metode DS CA penelitian ini menggunakan pendekatan
“indirect analogue downscaling method” dengan variabel prediktor dan prediktan
yang berbeda. Variabel sirkulasi atmosfer yang dipilih sebagai prediktor adalah
variabel yang merepresentasikan medan angin horizontal karena merupakan
variabel yang menentukan fase-fase evolusi monsun. Tiga variabel medan angin
antara lain: medan angin zonal (U850), medan fungsi arus vy, dan medan potensial
kecepatan y, ketiganya di lapisan 850 mb (Saha dkk., 2014; Surmaini dkk., 2015).
U850 sebagai prediktor karena banyak digunakan untuk merepresentasikan indeks-
indeks monsun. Sementara y dan y adalah kuantitas sirkulasi atmosfer yang
diturunkan dari variabel angin zonal dan angin meridional. y dan y masing-masing
merepresentasikan komponen rotasional dan divergen dari medan angin horizontal.
vy and y lebih sesuai dalam meggambarkan pola aliran di lintang rendah dimana
keseimbangan geostropis menurun karena adanya pengaruh Coriolis yang rendah

(Palmer, 1952; Li dkk., 2006).

Prosedur menggunakan CA untuk prediksi dibagi menjadi dua bagian: diagnosis
dan prognosis. Tahap diagnosis yaitu pemilihan subset pola cuaca historis dari
GCM dan menentukan kombinasi multilinier yang paling sesuai dengan pola target
dengan 30 subsets menghasilkan constructed analogue (Hidalgo dkk., 2008;
Syahputra, 2012). Empirical Orthogonal Function (EOF) digunakan untuk
mengurangi derajat bebas bidang sirkulasi atmosfer prediktor (Surmaini dkk., 2015;
Zorita dan von Storch, 1999). Menurut Lorenz (1969), derajat bebas sirkulasi
atmosfer tinggi dan rentang waktu data observasi yang tersedia pendek sehingga

kemungkinan ditemukannya suatu analog pola iklim skala hemisfer dengan kualitas
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baik sangat kecil. Van den Dool (1994) mengestimasi 10°° tahun waktu yang

dibutuhkan untuk menemukan dua pola atmosfer yang identik.

Tahap prognosis dilakukan dengan mengaplikasikan persamaan multilinier 30
subset analog prediktor yang didapatkan dalam tahap diagnosis terhadap data
prediktan untuk memprediksi atau mengestimasi di waktu target. Persamaan yang
digunakan dapat menggunakan metode regresi linier berganda (Surmaini dkk.,
2015), metode perata-rataan berbobot (Fernandez dan Saenz, 2003) atau metode
regresi lainnya. Menurut Pierce dkk. (2014), terdapat beberapa kelemahan metode
CA yaitu: pertama, adanya peningkatan koherensi spasial bidang hasil
downscaling. Kedua, proses averaging (rata-rata) yang cenderung menurunkan
variasi temporal hasil akhir. Ketiga, proses rata-rata menghasilkan terlalu banyak
drizzle (hujan ringan) untuk kasus downscaling presipitasi. Untuk perbedaan hari
hujan di suatu wilayah dengan wilayah lain, oleh metode CA dilakukan
penjumlahan terbobot pada hari analog yang menyebabkan presipitasi rendah di
kedua wilayah tersebut. Beberapa metode telah dipelajari untuk mengatasi
kelemahan CA seperti Localized Constructed Analogue/LOCA (Pierce dkk., 2014),
Multivariate Adaptive Constructed Analogue/MACA (Abatzoglou dan Brown,
2012), dan BCCA (Maurer dkk., 2010). Kesalahan metode LOCA lebih kecil
dibandingkan dengan BCCA untuk downscaling suhu dan presipitasi di lokasi
Amerika Serikat (Pierce dkk., 2014). Pada metode LOCA dilakukan pemilihan
analog hari tunggal yang terbaik/paling sesuai dengan observasi di wilayah lokal di
sekitar titik yang didownscaling, dan dapat mereproduksi suhu dan presipitasi

ekstrem.

I1.2.2 Pengaruh Angin Monsun terhadap Curah Hujan di Indonesia

Angin monsun terjadi karena adanya perbedaan fisis antara lautan dan daratan
(benua), dimana kapasitas panas yang dimiliki lautan lebih tinggi dibandingkan
benua. Laut lebih dingin selama musim panas dan lebih hangat selama musim
dingin dibandingkan dengan benua sehingga mempengaruhi perbedaan tekanan
udara dengan arah gradien gaya tekanan dari benua ke lautan pada musim dingin

dan dari lautan ke benua pada musim panas (Tjasyono dkk., 2008).
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Penelitian ini melakukan pendekatan multi-jendela dalam pemilihan subset pola
cuaca historis prediktor GCM di lokasi tujuh jendela/window wilayah monsun
(Gambar II.5). Pendekatan ini bertujuan untuk mendapatkan hasil CA secara
probabilistik atau ensemble seperti yang dilakukan oleh Syahputra (2012) dan
Surmaini dkk. (2015). Window-window berupa wilayah-wilayah yang didefinisikan
sebagai wilayah monsun oleh kajian-kajian indeks monsun ditambah wilayah benua
maritim Indonesia. Sirkulasi atmosfer pada ketujuh window tersebut diasumsikan
mempengaruhi pola curah hujan di wilayah Indonesia. Wilayah-wilayah yang
dipilih sebagai window domain adalah:
e Benua maritim Indonesia: 80° — 150° BT dan 15° LS — 15° LU (Robertson
dkk., 2011)
e Wilayah indeks monsun Australia (AUSMI): 110° — 130° BT dan 15° — 5°
LS (Kajikawa dkk., 2010)
e Wilayah indeks monsun definisi Webster dan Yang (WYMI): 40° — 110°
BT dan EQ —20° LU (Webster dan Yang, 1992)
e Wilayah monsun India (ISM): 40° — 80° BT dan 5° — 15° LU serta 70° — 90°
BT dan 20° — 30° LU (Wang dkk., 2001)
e Wilayah monsun Pasifik Barat Daya (WNPMI) : 100° — 130° BT dan 5° —
15° LU serta 110° — 140° BT dan 20° — 30° LU (Wang dkk., 2001).
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Gambar II.5  Window domain yang digunakan dalam tahap diagnosis: (1)
benua maritim, (2) wilayah monsun Australia, (3) wilayah
indeks monsun definisi Webster dan Yang, (4 dan 5) wilayah
monsun India, serta (6 dan 7) wilayah monsun Pasifik Barat
Daya (Sumber: Syahputra, 2012).
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Monsun benua maritim memiliki variabilitas spasial dan temporal pada semua skala
waktu dan berkaitan dengan siklus diurnal, tipe cuaca subseasonal, dan variabilitas
interannual ENSO di wilayah Indonesia. Interaksi medan angin dan modulasi
siklus diurnal mempengaruhi wilayah sub regional dengan topografi kepulauan
yang kompleks (Robertson dkk., 2011). Monsun benua maritim umumnya
memiliki curah hujan tinggi pada musim dingin di Benua Asia (boreal winter).
Wilayah AUSMI mencerminkan variabilitas curah hujan di benua maritim dan
Australia Utara secara musiman, intraseasonal, interannual, dan antar dekade
(interdecadal). Awal monsun musim panas Australia umumnya sejalan dengan

transisi angin zona troposfer bawah dari timur ke barat (Kajikawa dkk., 2010).

Wilayah WYMI definisi Webster dan Yang (1992) sebagai wilayah indeks sirkulasi
monsun menggunakan selisih kecepatan angin antara 850 hPa dan 200 hPa (angin
geser) untuk merepresentasikan skala besar baroklinik Benua Asia dan Samudra
Hindia yang berkaitan dengan intensitas monsun Asia musim panas. Menurut
Ailikun and Yasunari (1998) intensitas WYMI memiliki hubungan yang kuat

dengan aktivitas konveksi di Samudera Pasifik Barat pada daerah yang hangat.

Kekuatan monsun musim panas Asia menurut Wang dkk. (2001) berkaitan dengan
intensitas dua sumber panas konvektif utama yang berpusat di Teluk Benggala
(wilayah ISM) dan Laut Filipina (wilayah WNPMI). Wilayah ISM berkaitan
dengan peningkatan hujan di India dan Teluk Benggala dan pergerakan pusaran
arus di Samudra Hindia di wilayah tropis. Kajian hubungan ISM dengan variabilitas
curah hujan di wilayah Indonesia dilakukan oleh Kripalani dan Kurkalni (1997)
menggunakan indeks hujan monsun India (IMR) bulan Juni-September 1871-1995
(Parthasarathy dkk., 1994). Hubungan positif yang signifikan antara IMR dan curah
hujan di wilayah utara ekuator antara Pulau Sulawesi dan Papua, sedangkan di
Pulau Jawa dan Sumatera negatif dan lebih lemah. Menurut D’ Arrigo dan Smerdon
(2008), penguatan monsun India berkaitan dengan kekeringan di wilayah Pulau

Jawa.
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Wilayah WNPMI (Wang dkk., 2001) berkaitan dengan curah hujan di Laut China
Selatan dan Samudera Pasifik Barat Daya serta zona konvektif dari Kalimantan
hingga India Selatan. Menurut Mulsandi dkk., 2021, hubungan indeks monsun
WNPMI dengan hujan Global Precipitation Climatology Project (GPCP) wilayah
Indonesia berkebalikan, dimana aktivitas monsun di Pasifik Barat menguat maka
aktivitas monsun di selatan Indonesia akan melemah begitu juga sebaliknya.
WNPM yang kuat dapat meningkatkan divergensi level atas di Laut Filipina dan
arus lintas-ekuator timur dan selatan di atas benua maritim yang terhubung ke

dataran tinggi Australia (Wang dkk., 2001).

I1.2.3 Kalibrasi Luaran Hasil Downscaling

Model DS menurut Wilby dkk (2004) sering dikalibrasi untuk mengatasi
permasalahan kejadian ekstrem karena umumnya metode DS sukses dalam
mereproduksi nilai rata-rata iklim. Modifikasi metode CA dalam penelitian ini
untuk mendapatkan representasi data ekstrem adalah dengan melakukan kalibrasi
menggunakan metode BMA. Metode BMA yang telah banyak digunakan untuk
mengkalibrasi prediksi ensemble jangka pendek hingga menengah dari luaran
model prediksi global (Sloughter dkk., 2007; Raftery dkk., 2005, Muharsyah,
2020). BMA diusulkan oleh Raftery dkk. (2005) sebagai metode statistik
postprocessing ensemble yang mengkombinasi distribusi prediktif dari ensemble
anggota.  Probability density function (PDF) prediktif BMA dari sejumlah
ensemble merupakan rata-rata terboboti PDF yang berpusat pada prediksi masing-
masing anggota dengan bobot yang terkoreksi bias. Bobot tersebut sama dengan
probabilitas posterior model yang menggambarkan kontribusi relatif model

terhadap skill prediktif selama periode training.

Raftery dkk. (1997) merekomendasikan penggunaan algoritma Expectation-
Maximization (EM) untuk training model BMA, Vrugt (2016) menyajikan metode
alternatif untuk training model BMA menggunakan simulasi Markov chain Monte
Carlo (MCMC) dengan Differential Evolution Adaptive Metropolis (DREAM).

BMA merupakan cara yang mungkin dapat dilakukan dalam menangani
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ketidakpastian model (Vrugt, 2016). Metode BMA sangat berguna ketika

berhadapan dengan output dari model simulasi dinamis.
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