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Bab II    Tinjauan Pustaka 

 
II.1 Analisis Iklim Baseline 

Perubahan iklim menimbulkan risiko bagi manusia dan sistem alam. Risiko 

perubahan iklim menurut IPCC (2014) merupakan potensi dampak negatif 

perubahan iklim yang dihasilkan dari interaksi antara kerentanan (vulnerability), 

keterpaparan (exposure) dan ancaman (hazard). Analisis risiko perubahan iklim 

melibatkan interaksi iklim, lingkungan dan faktor manusia yang mengarah pada 

dampak serta peranan faktor non-iklim yang menentukan dampak (Gambar II.1). 

Evaluasi variabilitas iklim alami dan perubahan iklim antropogenik pada kejadian 

cuaca dan iklim ekstrem merupakan bagian dari analisis ancaman (kiri). Sedangkan 

proses adaptasi dan mitigasi, sosial dan ekonomi, kebijakan pemerintah (kanan) 

terkait dengan analisis keterpaparan dan kerentanan. 

 

 

 

 

 

 

 

 

 

 

 

Gambar II.1 Konsep risiko dampak perubahan iklim hasil interaksi 
ancaman/hazard, keterpaparan/exposure dan 
kerentanan/vulnerability (sumber: IPCC, 2014) 

 

Analisis perubahan iklim menurut IPCC-TGICA (2007) secara umum dilakukan 

dengan dua pendekatan yakni top-down berdasarkan skenario proyeksi hasil-hasil 

simulasi GCM dan bottom-up berdasarkan analisis data observasi iklim baseline. 

Data klimatologi observasi dengan kualitas yang baik dibutuhkan untuk periode 

baseline. Data iklim baseline ditentukan berdasarkan tipe data, durasi periode 

K
ol

ek
si

 d
ig

ita
l m

ili
k 

U
P

T
 P

er
pu

st
ak

aa
n 

IT
B

 u
nt

uk
 k

ep
er

lu
an

 p
en

di
di

ka
n 

da
n 

pe
ne

lit
ia

n



8 

baseline, sumber data dan bagaimana aplikasi penggunaannya dalam penilaian 

dampak. Presipitasi merupakan salah satu parameter penting untuk analisis 

perubahan iklim. Kriteria pemilihan periode baseline menurut IPCC, (Carter dkk., 

1994) antara lain: 

 menggambarkan kondisi saat ini atau rata-rata iklim saat ini di suatu wilayah 

studi 

 durasi yang cukup untuk mencakup variasi iklim termasuk jumlah 

signifikan anomali cuaca 

 mencakup ketersediaan periode data semua parameter iklim dan 

terdistribusi serta berkualitas baik 

 konsisten dan dapat dibandingkan dengan baseline yang digunakan oleh 

penilaian dampak lainnya 

 

Periode baseline iklim yang umum digunakan adalah periode “normal” 30 tahun 

yang ditentukan oleh World Meteorology Organization (WMO). Sejak 1956, WMO 

(2007) telah merekomendasikan negara anggotanya untuk menghitung normal 

iklim 30 tahun setiap sepuluh tahun. Standar normal klimatologi WMO merupakan 

data iklim rata-rata yang dihitung setiap periode 30 tahun diakhiri dengan tahun 

yang berakhiran nol (0) misalkan standar normal saat ini adalah adalah 1 Januari 

1981 hingga 31 Desember 2010. Periode referen standar normal untuk analisis 

perubahan iklim saat ini adalah periode 1961 hingga 1990, sehingga untuk 

melakukan analisis perubahan iklim diperlukan periode minimal 60 tahun atau dua 

periode normal misalkan periode 1961-1990 dibandingkan dengan normal lainnya 

seperti 1981-2010. Beberapa sumber untuk memperoleh data iklim baseline (IPCC-

TGICA, 2007) antara lain: badan meteorologi nasional dan arsip, dataset 

supranasional dan global, serta output dari model iklim dan generator cuaca. 

 

II.2 Dataset Presipitasi 

Presipitasi merupakan komponen utama dalam siklus hidrologi, presipitasi adalah 

berbagai produk hasil kondensasi uap air di atmosfer yang jatuh ke Bumi (Tjasyono, 

2004) akibat pengaruh gravitasi. Presipitasi berupa hujan, gerimis, salju, batu es 

(hail), sleet, graupel, virga, kabut, dan embun. Pengukuran presipitasi permukaan 
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dilakukan oleh penakar hujan, disdrometer, dan ground radar. Sedangkan estimasi 

presipitasi menggunakan satelit dengan teknik microwave (aktif dan pasif) dan 

merging infra merah serta kombinasi dari teknik tersebut (Tapiador dkk., 2012).  

 

Dataset presipitasi yaitu kumpulan data presipitasi global dengan resolusi grid 

tertentu dapat dimanfaatkan dalam melakukan analisis iklim baseline. Saat ini 

sudah banyak dikembangkan dataset presipitasi berbasis grid, menurut Beck dkk. 

(2017), dataset berbeda-beda dalam hal: desain objektif (homogenitas temporal, 

akurasi atau keduanya), sumber data (radar, penakar hujan satelit, analisis atau 

reanalisis atau kombinasi), resolusi spasial (dari 0,05 hingga 2,5 derajat), cakupan 

wilayah (dari benua hingga global), resolusi temporal yang dipublikasi (dari 30 

menit hingga bulanan), rentang waktu (dari satu hingga 115 tahun), dan 

latensi/lamanya perpindahan data (dari tiga jam hingga beberapa tahun). 

 

Jenis dataset presipitasi beserta metode pembuatannya disajikan dalam Gambar 

II.2. Resolusi spasial maupun temporal dataset presipitasi cukup beragam, Gambar 

II.3 menunjukkan panjang dataset presipitasi berbagai resolusi spasial dengan 

resolusi temporal bulanan dan Gambar II.4 merupakan resolusi temporal harian 

(termasuk di dalamnya subharian: tiga jam-an dan enam jam-an). Ketersediaan 

dataset presipitasi bulanan yang memiliki periode terpanjang berdasarkan Gambar 

II.3 adalah dataset National Oceanic & Atmospheric Administration 20 Century 

(NOAA 20 CR) diikuti oleh Climatic Research Unit (CRU), Willmot & Matsuura, 

Global Precipitation Climatology Centre Full Data Reanalysis (GPCC FDR), dan 

ERA-20CM. Dataset presipitasi harian terpanjang berdasarkan Gambar II.4 adalah 

NOAA-20CR, ERA-20CM, dan Global Meteorological Forcing Dataset (GFD). 

Dataset berdasarkan data penakar hujan dan reanalisis umumnya menyediakan 

periode jangka waktu yang cukup panjang, sedangkan dataset berdasarkan data 

satelit memiliki keterbatasan panjang periode namum dapat memberikan informasi 

penting mengenai dinamika cuaca, kekeringan, dan monitoring hidrologi (Sun dkk, 

2017). 
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Terdapat tiga kategori dataset presipitasi (Arakawa dan Kitoh, 2011) antara lain: 

pertama, dataset berdasarkan penakar hujan. Kedua, dataset berdasarkan data 

satelit baik menggunakan perangkat infra merah (infrared) maupun gelombang 

mikro (microwave). Ketiga, dataset berdasarkan kombinasi penakar hujan dan 

satelit. Selain itu, ada juga dataset presipitasi reanalisis yang dibuat dengan skema 

asimilasi dan model melibatkan semua data observasi yang ada pada setiap jam 

tertentu (misal sembilan hingga 12 jam) dalam proses analisisnya. Data observasi 

yang digunakan antara lain: data radiosonde, satelit, buoy, penerbangan, dan kapal 

laut. Data reanalisis meliputi data observasi masa lalu dengan model berdasarkan 

sistem asimilasi data yang juga digunakan dalam prakiraan cuaca, selain itu terdapat 

juga dataset kombinasi observasi, satelit, dan reanalisis. Kelebihan dan kekurangan 

dataset presipitasi berdasarkan sumber datanya disajikan dalam Tabel II.1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Gambar II.2 Ketersediaan dataset presipitasi untuk mendukung data iklim 
baseline. 
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Tabel II.1 Kelebihan dan kekurangan dataset presipitasi berdasarkan sumber data 
(Li dkk., 2018; Sun dkk., 2018). 

 
No Dataset Presipitasi Kelebihan Kekurangan 
1 Berdasarkan penakar 

hujan (contoh: Asian 
Precipitation – Highly 
Resolved Observational 
Data Integration 
Towards Evaluation of 
Water 
Resources/APHRODITE 
dan 
Southeast Asia 
Observation/SA-OBS)  

 Merupakan 
aplikasi 
pengukuran 
original dari 
permukaan dengan 
periode data yang 
panjang (Li dkk., 
2018) 
 
 

 Kualitas dataset 
tergantung dari 
kerapatan penakar 
hujan, semakin rapat 
realitas presipitasi 
semakin baik (Li dkk., 
2018) dan topografi 
mempengaruhi error 
 Metode interpolasi 
kurang mampu 
mengatasi kelemahan 
dari pengukuran 
penakar hujan (Li dkk., 
2018) 

-Jumlah penakar hujan 
yang semakin menurun 
akibat masalah biaya 
operasional, kebijakan 
organisasi meteorologi 
setempat, perpindahan, 
dan penelantaran lokasi, 
masalah ekonomi-politik 
(Strangways, 2006; Sun 
dkk., 2018) 

2 Berdasarkan satelit 
(contoh: Climate 
Prediction Center 
MORPHing 
technique/CMORPH, 
Global Precipitation 
Measurement- 
Integrated Multi-
satellitE Retrievals for 
GPM/GPM-IMERG, 
dan Global Satellite 
Mapping of 
Precipitation/GSMaP) 

 Data observasi 
secara spasial, 
kualitas data tidak 
terpengaruh oleh 
angin dan 
parameter cuaca 
lain (Li dkk., 2018) 

 Data selalu ada 
pembaharuan 
mendekati real 
time  

 Memiliki resolusi 
temporal yang 
lebih tinggi hingga 
30 menit sehingga 
dapat 
menggambarkan 
kejadian hujan 
ekstrem 

 Ketergantungan pada 
bias platform dan sensor 
yang disebabkan oleh 
salju dan es (Li dkk., 
2018) 

 Periode data umumnya 
lebih pendek 
dibandingkan dataset 
berdasarkan penakar 
hujan dan reanalisis 
(Sun dkk., 2018) 

 Masing-masing sensor 
satelit, algoritma 
pengolahan dan 
granularity 
mempengaruhi 
keakuratan estimasi 
presipitasi (Hufman 
dkk., 2010) 
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3 Berdasarkan reanalisis 
(contoh: ERA-20C, 
ERA5, dan JRA-25) 

 Kombinasi dari 
data model dengan 
berbagai tipe data 
observasi (Li dkk., 
2018) 

 Ketersediaan 
Periode dataset 
yang panjang 

 

 Adanya perubahan 
error sistem observasi 
model (Li dkk., 2018) 

 Resolusi spasial yang 
rendah  

4 Berdasarkan kombinasi 
(contoh: 
Climate Hazards group 
Infrared Precipitation 
with Stations/CHIRPS, 
MSWEP, 
GFD, Precipitation 
Estimation from 
Remotely Sensed 
Information Using 
Artificial Neural 
Networks- Climate Data 
Record /PERSIANN-
CDR dan TRMM 
Multisatellite 
Precipitation 
Analysis/TMPA 3B42) 

 Memperoleh 
keunggulan yang 
lengkap dari 
sumber data 
penakar hujan, 
satelit, dan 
reanalisis (Li dkk., 
2018) 

-tetap ada koreksi untuk 
mengurangi kesalahan  

 

II.3 Evaluasi Dataset Presipitasi 

Studi evaluasi terhadap dataset presipitasi telah banyak dilakukan pada penelitian 

sebelumnya untuk memahami kelebihan dan kekurangan dari produk dataset 

presipitasi tersebut (Beck dkk., 2017). Ada yang menggunakan data stasiun sebagai 

data referen (Hirpa dkk., 2010; Buarque dkk., 2011; Bumke dkk., 2016; Alijanian 

dkk., 2017) atau radar yang telah dikoreksi dengan penakar hujan (AghaKouchak 

dkk., 2011; Islam dkk., 2012), perbandingan pola spasio-temporal (Kidd dkk., 

2013), dan perbandingan hasil modeling hidrologi yang berkaitan dengan simulasi 

debit sungai (Collischonn dkk., 2008; Behrangi dkk., 2011; Beck dkk., 2017; 

Mazzoleni dkk., 2019).  

 

Metode studi perbandingan dataset presipitasi sebelumnya menggunakan metrik 

performa statistik antara lain: koefisien korelasi (Beck dkk., 2017), bias (RMSE, 

Mean Absolute Error/MAE, persentil 90,99, dryspell, dan lain-lain) (Prasetia dkk., 
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2011; Vernimmen dkk., 2012; Beck dkk., 2017), performa kategori seperti tabel 

kontingensi (Van den Besselaar dkk., 2017), Kling-Gupta efficiency/KGE (Beck 

dkk., 2019), Probability of Detection (POD), dan False Alarm Ratio (FAR) 

(Maggioni dkk., 2016). Metrik performa lainnya yang digunakan seperti Nash–

Sutcliffe model efficiency coefficient (NSE) untuk simulasi modeling hidrologi 

(Beck dkk., 2017; Mazzoleni dkk., 2019), indeks musim: Entropi Relatif/RE dan 

indeks musim nondimensi/DSI (Pascale dkk., 2015; Ceglar dkk., 2017), analisis 

distribusi, skill score fraksi kejadian hujan lebat atau nilai ekstrem (Ceglar dkk., 

2017). Ahmadalipour dkk. (2017) serta Chinn dan Yoden (2018) melakukan 

analisis performa multi data model iklim dengan dataset presipitasi sebagai referen 

menggunakan multi metrik antara lain: rata-rata, varians, koefisien korelasi, tren 

dan perubahan relatif untuk teknik univariat, sedangkan teknik multivariat 

menggunakan PCA, SVD, Canonical Correlation Analysis (CCA), dan analisis 

kluster. 

 

Sun dkk. (2018) melakukan investigasi perbandingan dan perbedaan secara global 

terhadap 30 dataset presipitasi skala waktu tahunan, bulanan, dan harian 

berdasarkan kategorinya. Hasil menunjukkan terdapat ketidakpastian yang tinggi 

pada besaran nilai dan variabilitas presipitasi pada berbagai skala waktu. Variasi 

tahunan hingga mencapai 300 mm dan perbedaan tertinggi umumnya terdapat pada 

dataset reanalisis dibandingkan dataset basis lainnya. Secara musiman, perbedaan 

jumlah presipitasi periode JJA (Juni-Juli-Agustus) dan MAM (Maret-April-Mei) 

berkontribusi terhadap perbedaan tahunan dibandingkan periode lain. Pada skala 

harian kejadian hujan ringan lebih sering terjadi dan memiliki perbedaan yang 

tinggi. Perbedaan kejadian presipitasi ekstrem lebih tinggi di lintang rendah 

dibandingkan lintang yang lebih tinggi. Jumlah ketersediaan penakar hujan semakin 

menurun dan terbatas pada sampling bulanan, sehingga sulit untuk melihat 

perubahan kejadian ekstrem jangka pendek. Dataset berdasarkan satelit sulit 

digunakan untuk studi berbasis klimatologi karena ketersediaan paling panjang 

hanya 40 tahun.  
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Studi sebelumnya mengenai perbandingan berbagai dataset presipitasi untuk 

wilayah Indonesia yaitu performa dataset SA-OBS di wilayah Asia Tenggara 

dibandingkan dengan APHRODITE, CMORPH dan Tropical Rainfall Measuring 

Mission (TRMM) menunjukkan SA-OBS lebih mewakili observasi stasiun dalam 

hal frekuensi kering/basah, waktu kejadian presipitasi dan reproduksi presipitasi 

ekstrem (Van den Besselaar dkk., 2017). Validasi TRMM terhadap 20 penakar 

hujan data observasi di Indonesia berdasarkan tipe hujan tahun 2004-2008 

menunjukkan data TRMM underestimate pada tipe monsun dan semi-monsun 

sedangkan pada tipe anti-monsun overestimate (Prasetia dkk., 2011). Dataset 

TMPA 3B42RT memiliki akurasi tertinggi dibandingkan PERSIANN dan 

CMORPH di wilayah Indonesia untuk musim kemarau dan tahunan dengan tujuan 

monitoring kekeringan (Vernimmen dkk., 2012). 

 

II.4 Rekonstruksi Data 

Pendekatan untuk mengatasi keterbatasan data dapat dilakukan dengan rekonstruksi 

data presipitasi atau curah hujan masa lalu. Beberapa metode rekonstruksi dataset 

presipitasi dalam mendukung ketersediaan data iklim baseline antara lain metode 

interpolasi, merging, blending, microwave (aktif maupun pasif), infrared, asimilasi 

dan downscaling serta beberapa kombinasi dari metode tersebut seperti pada 

Gamabr II.2. Penelitian mengenai rekonstruksi curah hujan sebelumnya disajikan 

pada Tabel II.2.  

 

Rekonstruksi curah hujan di wilayah Indonesia pernah dilakukan oleh Van den 

Besselaar dkk. (2017) yaitu dataset SA-OBS dengan panjang data dari tahun 1981 

hingga 2017, dan untuk wilayah Pulau Jawa oleh Yanto dkk. (2017) periode 1985-

2014 dengan metode interpolasi. Rekonstruksi data oleh Kautz dkk. (2019), 

Caillouet dkk. (2016), dan Caillouet dkk. (2019) dengan melakukan pengembangan 

model presipitasi secara stokastik atau downscaling dataset reanalisis global. 

 

Metode downscaling dilakukan untuk mendapatkan informasi cuaca dan iklim 

skala lokal terutama dekat permukaan, dari variabel atmosfer skala regional dari 

GCM. Metode downscaling dapat dibagi dalam dua jenis yaitu dinamik dan 
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statistik. Dalam metode downscaling dinamik luaran dari GCM digunakan untuk 

menjalankan model numerik regional dengan resolusi spasial yang lebih tinggi 

sehingga kondisi lokal disimulasi lebih detil. Dalam DS, hubungan statistik antara 

variabel observasi dan GCM yang dibangun untuk mendapatkan variabel lokal dari 

luaran GCM. 

 

Tabel II.2 Penelitian sebelumnya mengenai rekonstruksi data. 
 
No Tema Penelitian Sumber Pustaka 

1 SA-OBS dataset suhu udara permukaan dan 

presipitasi harian di wilayah Asia Tenggara 

Van den Besselaar dkk. 

(2017) 

2 Pengembangan dataset grid cuaca di wilayah 

Pulau Jawa Indonesia 1985–2014 

Yanto dkk. (2017) 

3 Simulasi Weather Research and Forecasting 

(WRF) untuk analisis presipitasi klimatologis 

dan ekstrem  

Cardoso dkk. (2013) 

4 Pengembangan dataset presipitasi di Eropa 

secara stokastik 

Kautz dkk. (2019) 

5 Rekonstruksi dataset cuaca ensemble harian 

142 tahun dengan resolusi tinggi di wilayah 

Prancis  

Caillouet dkk. (2019) 

 

Rekonstruksi dengan metode downscaling dinamik dilakukan oleh Cardoso dkk. 

(2013) dan Kautz dkk. (2019) terhadap data reanalisis global yaitu data ERA-

Interim dan ERA-20C dengan tujuan aplikasi hidrologi untuk menganalisis 

representasi sistem cuaca transient (tidak tetap) dan mereproduksi variabilitas 

spasial data observasi serta cuaca ekstrem secara statistik (Cardoso dkk., 2013). 

Luaran data hasil proses berupa Regional Climate Model (RCM) dengan integrasi 

data curah hujan harian. Informasi yang didapatkan dari hasil RCM lebih akurat 

dibandingkan dengan data global yang resolusinya lebih kasar, namun proses 

downscaling dinamik membutuhkan kapasitas komputasi tinggi untuk 

menghasilkan hasil simulasi RCM dengan resolusi tinggi. Keterbatasan kapasitas 

komputasi dapat diatasi dengan melakukan downscaling metode lainnya yaitu 
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secara statistik. Metode DS dapat dilakukan untuk menurunkan dari variabel 

atmosfer skala global seperti data reanalisis menjadi variabel meteorologi dekat 

permukaan skala lokal. Metode DS membutuhkan lebih sedikit sumber daya dan 

lebih kecil waktu perhitungan dibandingkan dengan downscaling dinamik (Hidalgo 

dkk., 2008). 

 

Cillouet dkk. (2016) melakukan DS Stepwise Analogue Downscaling method for 

Hydrology (SANDHY) untuk memperoleh rekonstruksi probabilitas presipitasi dan 

suhu di Prancis dari tahun 1871-2012 dari data reanalisis global NOAA 20CR. 

SANDHY menyediakan 125 analog ensemble harian periode 1871-2012 untuk 608 

zona homogen di Prancis. Metode DS memiliki tiga macam teknik (Wilby dkk., 

2004) antara lain: weather classification, regression models, dan weather 

generators.  Pendekatan analog merupakan salah satu contoh teknik weather 

classification dimana prediktor dipilih berdasarkan kecocokan analog pola cuaca 

sebelumnya dengan saat ini. Dalam penelitian ini dilakukan pengembangan metode 

DS CA untuk merekonstruksi presipitasi masa lalu dengan langkah ke belakang 

(backward).

II.2.1 Constructed Analogue 

Metoda DS dengan pendekatan analog telah dikembangkan oleh Lorenz (1969), 

Van den Dool (1994), dan Zorita dkk. (1995) untuk prediksi cuaca. Zorita dan von 

Storch (1999) serta Hidalgo dkk. (2008) menggunakannya untuk memperoleh 

statistik iklim lokal yang konsisten dengan kondisi atmosfer skala luas. Penerapan 

metode analog membutuhkan basis data yang panjang agar dapat mencakup pola 

cuaca atau kondisi atmosfer yang mungkin muncul di masa mendatang. Kelebihan 

dari metode CA adalah adanya analogi pola iklim skala lokal dengan suatu 

kondisi/pola iklim skala luas sehingga struktur spasial dari iklim lokal terwakilkan 

dengan baik pada hasil simulasi. Metode CA meminimalisir bias dan menggunakan 

nilai absolut dari prediktan dalam estimasi. Perbandingan metode DS CA 

dibandingkan metode DS lainnya disajikan pada Tabel II.3. 
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Tabel II.3 Perbandingan metode CA dengan metode DS lainnya 
 
No Metode CA Metode DS lainnya 

1 Variabel prediktor bisa sama atau 

berbeda dengan prediktan, 

hubungan fisis masih 

dipertahankan dengan adanya 

pemilihan analog pola iklim/cuaca. 

Distribusi yang digunakan bisa 

dengan non normal (Hidalgo dkk., 

2008). 

Metode SD kategori linier seperti 

regresi linier, analisis CCA, SVD, 

dan metode Delta, dapat 

menggunakan banyak prediktor 

namun memiliki asumsi distribusi 

normal sehingga tidak cocok untuk 

kejadian esktrem (Hidalgo dkk., 

2008) 

2 Mempertahankan pola cuaca harian 

dari data GCM/reanalisis, yaitu 

dengan melakukan kombinasi linier 

data prediktor yang digunakan 

untuk membentuk analog (minimal 

30) dan hasil downscaling 

diperoleh dengan mengaplikasikan 

kombinasi linier tersebut terhadap 

data prediktan pada tanggal yang 

sama (Wilby dkk., 2004). 

Metode DS bias koreksi hanya 

menggunakan rata-rata bulanan dari 

GCM/reanalisis dan merekonstruksi 

pola data harian dengan mengambil 

sampel ulang secara acak pada data 

bulanan historis dan menskalakan 

nilai variabel harian mengikuti nilai 

proyeksi bulanan (Wilby dkk., 2004). 

3 Interval waktu hasil DS CA 

mengikuti prediktor, tidak mampu 

memprediksi di luar kondisi yang 

direkam (Hidalgo dkk., 2008). 

Metode DS kategori weather 

classification seperti metode analog 

dan kluster tidak mampu 

mereproduksi wet dan dry spell 

(wilby dkk., 2004) 

Metode DS kategori weather 

generator, dapat men-generate 

informasi sub-harian dari prediktor 

harian, menghasilkan banyak time-

series dan post-processing dan dapat 

mensimulasi wet dan dry spell 

(Hidalgo dkk., 2008). 
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Kemampuan metode DS CA bergantung pada kemiripan antar pola yang 

didefinisikan dalam pencarian analog (Zorita dan von Storch, 1998). Timbal dan 

McAvaney (2001) serta Anuchaivong dkk. (2017) menggunakan metrik Euclidean 

distance paling minimum sebagai perhitungan derajat kemiripan pola cuaca dari 

prediktor. Metrik lainnya yaitu Cosine Similarity seperti yang digunakan oleh 

Syahputra (2012) dan Surmaini dkk. (2015). 

 

Pemilihan prediktor dalam metode DS CA penelitian ini menggunakan pendekatan 

“indirect analogue downscaling method” dengan variabel prediktor dan prediktan 

yang berbeda. Variabel sirkulasi atmosfer yang dipilih sebagai prediktor adalah 

variabel yang merepresentasikan medan angin horizontal karena merupakan 

variabel yang menentukan fase‐fase evolusi monsun. Tiga variabel medan angin 

antara lain: medan angin zonal (U850), medan fungsi arus ψ, dan medan potensial 

kecepatan ꭓ, ketiganya di lapisan 850 mb (Saha dkk., 2014; Surmaini dkk., 2015).  

U850 sebagai prediktor karena banyak digunakan untuk merepresentasikan indeks‐

indeks monsun. Sementara ψ dan ꭓ adalah kuantitas sirkulasi atmosfer yang 

diturunkan dari variabel angin zonal dan angin meridional. ψ dan ꭓ masing‐masing 

merepresentasikan komponen rotasional dan divergen dari medan angin horizontal. 

ψ and χ lebih sesuai dalam meggambarkan pola aliran di lintang rendah dimana 

keseimbangan geostropis menurun karena adanya pengaruh Coriolis yang rendah 

(Palmer, 1952; Li dkk., 2006). 

 

Prosedur menggunakan CA untuk prediksi dibagi menjadi dua bagian: diagnosis 

dan prognosis. Tahap diagnosis yaitu pemilihan subset pola cuaca historis dari 

GCM dan menentukan kombinasi multilinier yang paling sesuai dengan pola target 

dengan 30 subsets menghasilkan constructed analogue (Hidalgo dkk., 2008; 

Syahputra, 2012). Empirical Orthogonal Function (EOF) digunakan untuk 

mengurangi derajat bebas bidang sirkulasi atmosfer prediktor (Surmaini dkk., 2015; 

Zorita dan von Storch, 1999). Menurut Lorenz (1969), derajat bebas sirkulasi 

atmosfer tinggi dan rentang waktu data observasi yang tersedia pendek sehingga 

kemungkinan ditemukannya suatu analog pola iklim skala hemisfer dengan kualitas 
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baik sangat kecil. Van den Dool (1994) mengestimasi 1030 tahun waktu yang 

dibutuhkan untuk menemukan dua pola atmosfer yang identik.  

 

Tahap prognosis dilakukan dengan mengaplikasikan persamaan multilinier 30 

subset analog prediktor yang didapatkan dalam tahap diagnosis terhadap data 

prediktan untuk memprediksi atau mengestimasi di waktu target. Persamaan yang 

digunakan dapat menggunakan metode regresi linier berganda (Surmaini dkk., 

2015), metode perata-rataan berbobot (Fernández dan Sáenz, 2003) atau metode 

regresi lainnya. Menurut Pierce dkk. (2014), terdapat beberapa kelemahan metode 

CA yaitu: pertama, adanya peningkatan koherensi spasial bidang hasil 

downscaling. Kedua, proses averaging (rata-rata) yang cenderung menurunkan 

variasi temporal hasil akhir. Ketiga, proses rata-rata menghasilkan terlalu banyak 

drizzle (hujan ringan) untuk kasus downscaling presipitasi. Untuk perbedaan hari 

hujan di suatu wilayah dengan wilayah lain, oleh metode CA dilakukan 

penjumlahan terbobot pada hari analog yang menyebabkan presipitasi rendah di 

kedua wilayah tersebut. Beberapa metode telah dipelajari untuk mengatasi 

kelemahan CA seperti Localized Constructed Analogue/LOCA (Pierce dkk., 2014), 

Multivariate Adaptive Constructed Analogue/MACA (Abatzoglou dan Brown, 

2012), dan BCCA (Maurer dkk., 2010). Kesalahan metode LOCA lebih kecil 

dibandingkan dengan BCCA untuk downscaling suhu dan presipitasi di lokasi 

Amerika Serikat (Pierce dkk., 2014). Pada metode LOCA dilakukan pemilihan 

analog hari tunggal yang terbaik/paling sesuai dengan observasi di wilayah lokal di 

sekitar titik yang didownscaling, dan dapat mereproduksi suhu dan presipitasi 

ekstrem.  

 

II.2.2 Pengaruh Angin Monsun terhadap Curah Hujan di Indonesia 

Angin monsun terjadi karena adanya perbedaan fisis antara lautan dan daratan 

(benua), dimana kapasitas panas yang dimiliki lautan lebih tinggi dibandingkan 

benua. Laut lebih dingin selama musim panas dan lebih hangat selama musim 

dingin dibandingkan dengan benua sehingga mempengaruhi perbedaan tekanan 

udara dengan arah gradien gaya tekanan dari benua ke lautan pada musim dingin 

dan dari lautan ke benua pada musim panas (Tjasyono dkk., 2008). 
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Penelitian ini melakukan pendekatan multi-jendela dalam pemilihan subset pola 

cuaca historis prediktor GCM di lokasi tujuh jendela/window wilayah monsun 

(Gambar II.5). Pendekatan ini bertujuan untuk mendapatkan hasil CA secara 

probabilistik atau ensemble seperti yang dilakukan oleh Syahputra (2012) dan 

Surmaini dkk. (2015). Window-window berupa wilayah‐wilayah yang didefinisikan 

sebagai wilayah monsun oleh kajian‐kajian indeks monsun ditambah wilayah benua 

maritim Indonesia. Sirkulasi atmosfer pada ketujuh window tersebut diasumsikan 

mempengaruhi pola curah hujan di wilayah Indonesia. Wilayah‐wilayah yang 

dipilih sebagai window domain adalah: 

 Benua maritim Indonesia: 80o − 150o BT dan 15o LS − 15o LU (Robertson 

dkk., 2011) 

 Wilayah indeks monsun Australia (AUSMI): 110o – 130o BT dan 15o – 5o 

LS (Kajikawa dkk., 2010) 

 Wilayah indeks monsun definisi Webster dan Yang (WYMI): 40o – 110o 

BT dan EQ – 20o LU (Webster dan Yang, 1992) 

 Wilayah monsun India (ISM): 40o – 80o BT dan 5o – 15o LU serta 70o – 90o 

BT dan 20o – 30o LU (Wang dkk., 2001) 

 Wilayah monsun Pasifik Barat Daya (WNPMI) : 100o – 130o BT dan 5o – 

15o LU serta 110o – 140o BT dan 20o – 30o LU (Wang dkk., 2001). 

 
Gambar II.5 Window domain yang digunakan dalam tahap diagnosis: (1) 

benua maritim, (2) wilayah monsun Australia, (3) wilayah 
indeks monsun definisi Webster dan Yang, (4 dan 5) wilayah 
monsun India, serta (6 dan 7) wilayah monsun Pasifik Barat 
Daya (Sumber: Syahputra, 2012).  
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Monsun benua maritim memiliki variabilitas spasial dan temporal pada semua skala 

waktu dan berkaitan dengan siklus diurnal, tipe cuaca subseasonal, dan variabilitas 

interannual ENSO di wilayah Indonesia. Interaksi medan angin dan modulasi 

siklus diurnal mempengaruhi wilayah sub regional dengan topografi kepulauan 

yang kompleks (Robertson dkk., 2011).  Monsun benua maritim umumnya 

memiliki curah hujan tinggi pada musim dingin di Benua Asia (boreal winter). 

Wilayah AUSMI mencerminkan variabilitas curah hujan di benua maritim dan 

Australia Utara secara musiman, intraseasonal, interannual, dan antar dekade 

(interdecadal). Awal monsun musim panas Australia umumnya sejalan dengan 

transisi angin zona troposfer bawah dari timur ke barat (Kajikawa dkk., 2010). 

 

Wilayah WYMI definisi Webster dan Yang (1992) sebagai wilayah indeks sirkulasi 

monsun menggunakan selisih kecepatan angin antara 850 hPa dan 200 hPa (angin 

geser) untuk merepresentasikan skala besar baroklinik Benua Asia dan Samudra 

Hindia yang berkaitan dengan intensitas monsun Asia musim panas. Menurut 

Ailikun and Yasunari (1998) intensitas WYMI memiliki hubungan yang kuat 

dengan aktivitas konveksi di Samudera Pasifik Barat pada daerah yang hangat.  

 

Kekuatan monsun musim panas Asia menurut Wang dkk. (2001) berkaitan dengan 

intensitas dua sumber panas konvektif utama yang berpusat di Teluk Benggala 

(wilayah ISM) dan Laut Filipina (wilayah WNPMI). Wilayah ISM berkaitan 

dengan peningkatan hujan di India dan Teluk Benggala dan pergerakan pusaran 

arus di Samudra Hindia di wilayah tropis. Kajian hubungan ISM dengan variabilitas 

curah hujan di wilayah Indonesia dilakukan oleh Kripalani dan Kurkalni (1997) 

menggunakan indeks hujan monsun India (IMR) bulan Juni-September 1871-1995 

(Parthasarathy dkk., 1994). Hubungan positif yang signifikan antara IMR dan curah 

hujan di wilayah utara ekuator antara Pulau Sulawesi dan Papua, sedangkan di 

Pulau Jawa dan Sumatera negatif dan lebih lemah.  Menurut D’Arrigo dan Smerdon 

(2008), penguatan monsun India berkaitan dengan kekeringan di wilayah Pulau 

Jawa.  
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Wilayah WNPMI (Wang dkk., 2001) berkaitan dengan curah hujan di Laut China 

Selatan dan Samudera Pasifik Barat Daya serta zona konvektif dari Kalimantan 

hingga India Selatan. Menurut Mulsandi dkk., 2021, hubungan indeks monsun 

WNPMI dengan hujan Global Precipitation Climatology Project (GPCP) wilayah 

Indonesia berkebalikan, dimana aktivitas monsun di Pasifik Barat menguat maka 

aktivitas monsun di selatan Indonesia akan melemah begitu juga sebaliknya. 

WNPM yang kuat dapat meningkatkan divergensi level atas di Laut Filipina dan 

arus lintas-ekuator timur dan selatan di atas benua maritim yang terhubung ke 

dataran tinggi Australia (Wang dkk., 2001). 

 

II.2.3 Kalibrasi Luaran Hasil Downscaling  

Model DS menurut Wilby dkk (2004) sering dikalibrasi untuk mengatasi 

permasalahan kejadian ekstrem karena umumnya metode DS sukses dalam 

mereproduksi nilai rata-rata iklim. Modifikasi metode CA dalam penelitian ini 

untuk mendapatkan representasi data ekstrem adalah dengan melakukan kalibrasi 

menggunakan metode BMA. Metode BMA yang telah banyak digunakan untuk 

mengkalibrasi prediksi ensemble jangka pendek hingga menengah dari luaran 

model prediksi global (Sloughter dkk., 2007; Raftery dkk., 2005, Muharsyah, 

2020). BMA diusulkan oleh Raftery dkk. (2005) sebagai metode statistik 

postprocessing ensemble yang mengkombinasi distribusi prediktif dari ensemble 

anggota.  Probability density function (PDF) prediktif BMA dari sejumlah 

ensemble merupakan rata-rata terboboti PDF yang berpusat pada prediksi masing-

masing anggota dengan bobot yang terkoreksi bias. Bobot tersebut sama dengan 

probabilitas posterior model yang menggambarkan kontribusi relatif model 

terhadap skill prediktif selama periode training. 

 

Raftery dkk. (1997) merekomendasikan penggunaan algoritma Expectation-

Maximization (EM) untuk training model BMA, Vrugt (2016) menyajikan metode 

alternatif untuk training model BMA menggunakan simulasi Markov chain Monte 

Carlo (MCMC) dengan Differential Evolution Adaptive Metropolis (DREAM). 

BMA merupakan cara yang mungkin dapat dilakukan dalam menangani 

K
ol

ek
si

 d
ig

ita
l m

ili
k 

U
P

T
 P

er
pu

st
ak

aa
n 

IT
B

 u
nt

uk
 k

ep
er

lu
an

 p
en

di
di

ka
n 

da
n 

pe
ne

lit
ia

n



25 

ketidakpastian model (Vrugt, 2016). Metode BMA sangat berguna ketika 

berhadapan dengan output dari model simulasi dinamis.  
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